Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimizing protein’s ’death domain’ halts leukemia in laboratory study

03.09.2004


Spiral-shaped molecules, reinforced by chemical ’staples,’ could aid drug discovery



A part of the system that causes cells to self-destruct when they are damaged or unneeded has been harnessed to kill leukemia cells in mice, say scientists at the Dana-Farber Cancer Institute. The discovery could aid in the discovery of new drugs for cancer and other diseases. The researchers plucked a critical "death domain" from a key molecule in the self-destruction mechanism of a cell, stiffened its Slinky-like structure with chemical "staples," and used it as a highly specific weapon to destroy leukemia cells. The findings will be published in the Sept. 3 issue of the journal Science.

"We have demonstrated an approach for getting at potential new drugs by using natural sequences [of amino acids] that have known biological effects," says Stanley J. Korsmeyer, MD, of Dana-Farber, co-senior author of the paper. "In this case we took the critical killer domain out of a pro-death molecule and chemically reinforced it, so we were able to get it into cancer cells and kill them."


Loren D. Walensky, MD, PhD, of Dana-Farber and Children’s Hospital Boston is the paper’s first author and Gregory L. Verdine, PhD, of Harvard University, is co- senior author.

Korsmeyer and his colleagues have pioneered studies of apoptosis, or programmed cell death, that rids the body of damaged or unneeded cells. Apoptosis is directed by a complex collection of proteins in a yin-yang-like balance and is activated by a variety of external and internal signals. Some of the proteins set in motion a cell’s death, while other "survival" proteins act to prevent programmed cell death.

One hallmark of cancer is that an excess of anti-death or survival proteins overwhelms the system when it is trying shut down the abnormal cell, causing the cell to reproduce, dangerously out of control, when it should be dying.

The pro-death part of the apoptosis toolbox includes a number of molecules known as BH3-only proteins. To ensure that cells destroy themselves when appropriate, despite contrary signals from anti-death molecules, BH3-only proteins contain a peptide subunit, termed "BH3", that is made of amino acids and functions as a critical "death domain." This subunit forms a coiled structure called an "alpha helix," which is similar to the shape of a Slinky toy. Amino acids positioned on the surface of the coils bind to amino acids on anti-death molecules such as BCL-2 and inhibit their activity. BCL-2, a key part of the apopotosis mechanism, was discovered by Korsmeyer.

Building on other recent work, Walensky sought to remove the alpha-helical BH3 subunit from the protein and use it as a sharply aimed tool to shut down the BCL-2 protein and activate the death pathway in cancer cells, without harming normal cells. If that proved successful, it would show that the BH3 alpha helix – and alpha helices from many other proteins – could be used like keys to turn off protein activity involved in disease processes.

These alpha helices then could serve as the foundation for building novel drugs. But one hurdle loomed. When the helical "death domain" is removed from its parent protein, it loses its rigid shape, becoming floppy liked an overstretched Slinky. In this form, it is vulnerable to degradation, unable to enter cells, and left powerless to block the antideath BCL-2 protein. Walensky’s goal was to return the isolated amino acid helix to its original shape after its removal from the BH3-containing protein.

Drawing on his dual background in chemistry and cell biology, and applying a strategy developed by Verdine, who is a chemist, Walensky found the answer. First, he made synthetic amino acids that mimicked some of those within the helix. "Then we swapped out the natural amino acids and inserted the synthetic ones" at certain positions along the helix. Crucially, the artificial amino acids were linked to each other by a pair of hydrocarbon subunits. Like a reinforcing metal staple, Walensky explains, these links held the peptide in its natural coiled configuration.

Further experiments confirmed that the stapled BH3 alpha helix retained its biological activity. In fact, it bound even more strongly to its target on the BCL-2 molecule, blocking its activity. Moreover, the reinforced coil was able to enter cancer cells and trigger apoptosis, or self-destruction, of those cells.

The most dramatic success occurred in mice transplanted with leukemia cells that gave off a glow when the mice were injected with a light-emitting substance, luciferin. After they administered the reinforced BH3 alpha helices, scientists noted that the glowing regions representing the leukemia cells retreated as the cells died, and the treated mice survived longer than those that were untreated.

"By applying a new chemical approach, we were able to brace peptides from within to generate biological tools that hadn’t existed before," says Walensky, "and these new molecules directly inhibit a protein interaction that we’re interested in. The potential is that you could take any alpha helix involved in a pivotal protein interaction, relevant to cancer or other diseases, and target it to that protein to disrupt the disease process."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>