Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimizing protein’s ’death domain’ halts leukemia in laboratory study

03.09.2004


Spiral-shaped molecules, reinforced by chemical ’staples,’ could aid drug discovery



A part of the system that causes cells to self-destruct when they are damaged or unneeded has been harnessed to kill leukemia cells in mice, say scientists at the Dana-Farber Cancer Institute. The discovery could aid in the discovery of new drugs for cancer and other diseases. The researchers plucked a critical "death domain" from a key molecule in the self-destruction mechanism of a cell, stiffened its Slinky-like structure with chemical "staples," and used it as a highly specific weapon to destroy leukemia cells. The findings will be published in the Sept. 3 issue of the journal Science.

"We have demonstrated an approach for getting at potential new drugs by using natural sequences [of amino acids] that have known biological effects," says Stanley J. Korsmeyer, MD, of Dana-Farber, co-senior author of the paper. "In this case we took the critical killer domain out of a pro-death molecule and chemically reinforced it, so we were able to get it into cancer cells and kill them."


Loren D. Walensky, MD, PhD, of Dana-Farber and Children’s Hospital Boston is the paper’s first author and Gregory L. Verdine, PhD, of Harvard University, is co- senior author.

Korsmeyer and his colleagues have pioneered studies of apoptosis, or programmed cell death, that rids the body of damaged or unneeded cells. Apoptosis is directed by a complex collection of proteins in a yin-yang-like balance and is activated by a variety of external and internal signals. Some of the proteins set in motion a cell’s death, while other "survival" proteins act to prevent programmed cell death.

One hallmark of cancer is that an excess of anti-death or survival proteins overwhelms the system when it is trying shut down the abnormal cell, causing the cell to reproduce, dangerously out of control, when it should be dying.

The pro-death part of the apoptosis toolbox includes a number of molecules known as BH3-only proteins. To ensure that cells destroy themselves when appropriate, despite contrary signals from anti-death molecules, BH3-only proteins contain a peptide subunit, termed "BH3", that is made of amino acids and functions as a critical "death domain." This subunit forms a coiled structure called an "alpha helix," which is similar to the shape of a Slinky toy. Amino acids positioned on the surface of the coils bind to amino acids on anti-death molecules such as BCL-2 and inhibit their activity. BCL-2, a key part of the apopotosis mechanism, was discovered by Korsmeyer.

Building on other recent work, Walensky sought to remove the alpha-helical BH3 subunit from the protein and use it as a sharply aimed tool to shut down the BCL-2 protein and activate the death pathway in cancer cells, without harming normal cells. If that proved successful, it would show that the BH3 alpha helix – and alpha helices from many other proteins – could be used like keys to turn off protein activity involved in disease processes.

These alpha helices then could serve as the foundation for building novel drugs. But one hurdle loomed. When the helical "death domain" is removed from its parent protein, it loses its rigid shape, becoming floppy liked an overstretched Slinky. In this form, it is vulnerable to degradation, unable to enter cells, and left powerless to block the antideath BCL-2 protein. Walensky’s goal was to return the isolated amino acid helix to its original shape after its removal from the BH3-containing protein.

Drawing on his dual background in chemistry and cell biology, and applying a strategy developed by Verdine, who is a chemist, Walensky found the answer. First, he made synthetic amino acids that mimicked some of those within the helix. "Then we swapped out the natural amino acids and inserted the synthetic ones" at certain positions along the helix. Crucially, the artificial amino acids were linked to each other by a pair of hydrocarbon subunits. Like a reinforcing metal staple, Walensky explains, these links held the peptide in its natural coiled configuration.

Further experiments confirmed that the stapled BH3 alpha helix retained its biological activity. In fact, it bound even more strongly to its target on the BCL-2 molecule, blocking its activity. Moreover, the reinforced coil was able to enter cancer cells and trigger apoptosis, or self-destruction, of those cells.

The most dramatic success occurred in mice transplanted with leukemia cells that gave off a glow when the mice were injected with a light-emitting substance, luciferin. After they administered the reinforced BH3 alpha helices, scientists noted that the glowing regions representing the leukemia cells retreated as the cells died, and the treated mice survived longer than those that were untreated.

"By applying a new chemical approach, we were able to brace peptides from within to generate biological tools that hadn’t existed before," says Walensky, "and these new molecules directly inhibit a protein interaction that we’re interested in. The potential is that you could take any alpha helix involved in a pivotal protein interaction, relevant to cancer or other diseases, and target it to that protein to disrupt the disease process."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>