Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimizing protein’s ’death domain’ halts leukemia in laboratory study

03.09.2004


Spiral-shaped molecules, reinforced by chemical ’staples,’ could aid drug discovery



A part of the system that causes cells to self-destruct when they are damaged or unneeded has been harnessed to kill leukemia cells in mice, say scientists at the Dana-Farber Cancer Institute. The discovery could aid in the discovery of new drugs for cancer and other diseases. The researchers plucked a critical "death domain" from a key molecule in the self-destruction mechanism of a cell, stiffened its Slinky-like structure with chemical "staples," and used it as a highly specific weapon to destroy leukemia cells. The findings will be published in the Sept. 3 issue of the journal Science.

"We have demonstrated an approach for getting at potential new drugs by using natural sequences [of amino acids] that have known biological effects," says Stanley J. Korsmeyer, MD, of Dana-Farber, co-senior author of the paper. "In this case we took the critical killer domain out of a pro-death molecule and chemically reinforced it, so we were able to get it into cancer cells and kill them."


Loren D. Walensky, MD, PhD, of Dana-Farber and Children’s Hospital Boston is the paper’s first author and Gregory L. Verdine, PhD, of Harvard University, is co- senior author.

Korsmeyer and his colleagues have pioneered studies of apoptosis, or programmed cell death, that rids the body of damaged or unneeded cells. Apoptosis is directed by a complex collection of proteins in a yin-yang-like balance and is activated by a variety of external and internal signals. Some of the proteins set in motion a cell’s death, while other "survival" proteins act to prevent programmed cell death.

One hallmark of cancer is that an excess of anti-death or survival proteins overwhelms the system when it is trying shut down the abnormal cell, causing the cell to reproduce, dangerously out of control, when it should be dying.

The pro-death part of the apoptosis toolbox includes a number of molecules known as BH3-only proteins. To ensure that cells destroy themselves when appropriate, despite contrary signals from anti-death molecules, BH3-only proteins contain a peptide subunit, termed "BH3", that is made of amino acids and functions as a critical "death domain." This subunit forms a coiled structure called an "alpha helix," which is similar to the shape of a Slinky toy. Amino acids positioned on the surface of the coils bind to amino acids on anti-death molecules such as BCL-2 and inhibit their activity. BCL-2, a key part of the apopotosis mechanism, was discovered by Korsmeyer.

Building on other recent work, Walensky sought to remove the alpha-helical BH3 subunit from the protein and use it as a sharply aimed tool to shut down the BCL-2 protein and activate the death pathway in cancer cells, without harming normal cells. If that proved successful, it would show that the BH3 alpha helix – and alpha helices from many other proteins – could be used like keys to turn off protein activity involved in disease processes.

These alpha helices then could serve as the foundation for building novel drugs. But one hurdle loomed. When the helical "death domain" is removed from its parent protein, it loses its rigid shape, becoming floppy liked an overstretched Slinky. In this form, it is vulnerable to degradation, unable to enter cells, and left powerless to block the antideath BCL-2 protein. Walensky’s goal was to return the isolated amino acid helix to its original shape after its removal from the BH3-containing protein.

Drawing on his dual background in chemistry and cell biology, and applying a strategy developed by Verdine, who is a chemist, Walensky found the answer. First, he made synthetic amino acids that mimicked some of those within the helix. "Then we swapped out the natural amino acids and inserted the synthetic ones" at certain positions along the helix. Crucially, the artificial amino acids were linked to each other by a pair of hydrocarbon subunits. Like a reinforcing metal staple, Walensky explains, these links held the peptide in its natural coiled configuration.

Further experiments confirmed that the stapled BH3 alpha helix retained its biological activity. In fact, it bound even more strongly to its target on the BCL-2 molecule, blocking its activity. Moreover, the reinforced coil was able to enter cancer cells and trigger apoptosis, or self-destruction, of those cells.

The most dramatic success occurred in mice transplanted with leukemia cells that gave off a glow when the mice were injected with a light-emitting substance, luciferin. After they administered the reinforced BH3 alpha helices, scientists noted that the glowing regions representing the leukemia cells retreated as the cells died, and the treated mice survived longer than those that were untreated.

"By applying a new chemical approach, we were able to brace peptides from within to generate biological tools that hadn’t existed before," says Walensky, "and these new molecules directly inhibit a protein interaction that we’re interested in. The potential is that you could take any alpha helix involved in a pivotal protein interaction, relevant to cancer or other diseases, and target it to that protein to disrupt the disease process."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>