Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment for pulmonary fibrosis may be achieved by blocking cell death in the lung

03.09.2004


A research team at Yale has found that blocking a kind of cell death called apoptosis in fibrotic diseases of the lung, also blocks the fibrosis, opening new ways of looking at treatment for lung diseases such as pulmonary fibrosis.



Published in the August 2 issue of the Journal of Experimental Medicine, the study, led by Jack A. Elias, M.D., of Yale, examined how a molecule called TGF-beta causes apoptosis and abnormal scarring in the lungs.

Elias said there are a variety of human diseases where normal tissue is replaced with scar tissue that doesn’t function the same way as the original tissue. This results in dysfunction of the skin or other involved organ. People can develop fibrosis of the skin, which leads to conditions like sclerodoma, where the skin thickens. When this occurs in the lungs, it is called pulmonary fibrosis. In pulmonary fibrosis, the normally thin lung tissue is replaced with thick, coarse scar tissue that impairs the flow of oxygen into the blood and leads to a loss of lung function.


"Most people think that an excess of TGF-beta is the cause of the fibrosis, so we explored how TGF-beta actually does this," said Elias, who, along with Chun Geun Lee, M.D. and the rest of the team, created a transgenic mouse and targeted TGF-beta into the mouse lungs. This overexpression of TGF-beta caused pulmonary fibrosis in the mouse. This unique experimental system allowed the research team to turn the gene on and off at will. They could time when the production of TGF-beta started and watch the sequence of events that occurred before pulmonary fibrosis developed.

"We discovered that TGF-beta causes the epithelial cells in the lung to die via apoptosis," said Elias. "Up until now, no one has really understood that this cell death comes before and is required for the development of pulmonary fibrosis. This is exciting because when biopsies of the lung from humans with pulmonary fibrosis are examined, fibrosis and apoptosis are observed simultaneously." "We now know the mechanism involved in apoptosis in the lungs," Elias added. "We could potentially treat fibrotic disorders in the lung by blocking apoptosis and no one has ever done that before."

This latest finding by Elias and his team is part of a large body of work dedicated to research into lung diseases such as asthma and pulmonary fibrosis. The ultimate goal is development of new treatments for these disorders.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>