Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The birth of a beak

03.09.2004


USC researchers detail process of beak formation in journal Science

The shapes of avian beaks are determined by areas of active growth amidst areas of slow growth in a developing embryo, and are associated with activity levels of a specific protein called bone morphogenetic protein 4 (BMP4), according to a group of researchers from the Keck School of Medicine of the University of Southern California. Their paper, which describes this molecular beak-shaping process, will be published in this week’s issue of the journal Science. A report on this paper and another closely related study will appear in the journal’s news section.

Different bird species tend to have differently shaped beaks, which are said to reflect the different evolutionary pressures under which they develop. In fact, Charles Darwin looked to 13 different species of finch from the Galapagos Islands to help bolster his theories of evolution, showing that while the Galapagos finches had most likely descended from a common ancestor, they had developed into distinct species based on differences in their beaks-differences which corresponded with their confinement to different islands in the archipelago and their adaptation to different ecological niches.



Today, beak shape is considered "a classical example of evolutionary diversification," writes Cheng-Ming Chuong, M.D., Ph.D., principal investigator on the Science paper and professor of pathology at the Keck School of Medicine, along with his colleagues. Still, while the reason for this diversity is explained by evolutionary selection, little is known about how different beak shapes are built at the cellular and molecular level. "Since beaks are made from cells, each ’designer beak’ must be made through differences in the regulation of cell behaviors," Chuong notes.

Beaks are actually a collection of "facial prominences," says Chuong, and these prominences grow at varying rates during chick development to "compose a unique beak." But while early chicken beak development has been studied to some degree, little is known about how these shapes are created in the later stages of development.

To shed some light on that question, Chuong and colleagues compared beak development in chickens and ducks: Duck beaks are long and wide, Chuong notes, while chicken beaks are small and have a conical shape. In their studies, the researchers focused on one particular facial prominence called the frontonasal mass, or FNM.

Research associate Ping Wu, Ph.D., the paper’s first author, found that in chickens and ducks there are two areas in the developing FNM in which cells divide rapidly to create the beak’s mass. In chickens, these two areas gradually converge into one area on the distal end of the beak, creating a sharp, growing tip. In ducks, two such proliferative zones remain, creating a wider, bigger beak.

Using in situ hybridization techniques, the researchers tracked the levels of a number of growth-related genes. They were able to pinpoint BMP4 as a candidate for mediating growth, Chuong says. In humans, several BMPs play a role in enhancing the rates of cell division and growth and regulating major developmental events including bone differentiation. Deregulation of BMP pathway activity has also been linked to some tumor growth.

To test whether or not BMP4 is indeed a growth mediator, they used techniques from gene therapy and protein delivery to mis-express BMP4 and its antagonist. "The results," Chuong says, "were astounding. The chicken beaks were modulated into a spectrum of beak shapes mimicking those seen in nature."

An accompanying paper in Science, which looked at molecular differences among the Galapagos finches themselves, also identified BMP4 as a major mediator of beak shape in a variety of finch species.

Together, these two studies are able to point to BMP4 as having a major role in the creation of the avian beak, demonstrating that it is "one of the major driving forces building beak mass." "By ’tinkering’ with BMP4 in beak prominences," Chuong and his scientific colleagues write, "the shapes of the chicken beak can be modulated." "These two papers in Science represent a a major step in basic biology," Chuong says, "moving toward a molecular understanding of Darwin’s evolutionary theories. The principals learned here also have practical implications. Learning how nature ’engineers’ stem cells and molds them into specific organs will help scientists make progress in tissue engineering."

The next step, says Chuong, is to look into how these areas of cell proliferation are localized physiologically, "an issue that’s also of concern to cancer research," he adds. In addition, he and his colleagues will be trying to understand how BMP4 and other morphogenetic molecular activities are regulated to adapt to environmental changes.

Chuong’s laboratory has taken a global approach to the study of how organs of different structures, sizes and shapes are produced in evolution and development. Their earlier work on the 120-million-year-old Longirostravis, the earliest wading bird, prompted them to begin looking further into the molecular bases of beak shape and chicken teeth in evolution.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>