Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle between bubbles might have started evolution

03.09.2004


Howard Hughes Medical Institute researchers are proposing that the first battle for survival-of-the-fittest might have played out as a simple physical duel between fatty bubbles stuffed with genetic material. The scientists suggest that genetic material that replicated quickly may have been all the bubbles needed to edge out their competitors and begin evolving into more sophisticated cells.



This possibility, revealed by laboratory experiments with artificial fatty acid sacs, is in sharp contrast to a current theory of the earliest evolution of cells, which suggests that cellular evolution was driven by primordial genetic machinery that actively synthesized cell membranes or otherwise influenced cell stability or division.

The researchers, led by Howard Hughes Medical Institute investigator Jack W. Szostak, published their findings in the September 3, 2004, issue of the journal Science. Szostak and first author Irene Chen, both from Massachusetts General Hospital and Harvard Medical School, collaborated on the studies with Richard Roberts of the California Institute of Technology.


Cells are basically sacs encapsulated by bilayered membranes of fatty acids and other lipids, plus proteins. A central question in evolution is how simple versions of these cells, or vesicles, first arose and began the process of competition that drove the evolution of life. "Most of the previous thinking about how cells grew and evolved was based on the idea of the initial evolution of structural RNAs or ribozymes -- enzymes that could synthesize membrane molecules," said Szostak. The ribozymes might have made more membrane material while the structural RNAs might have formed a cytoskeleton that influenced stability, shape, growth or division, he said.

However, Szostak and his colleagues theorized that a far simpler physical process might explain why cells would compete with one another for the materials necessary to expand their size. "We proposed that the genetic material could drive the growth of cells just by virtue of being there," he said. "As the RNA exerts an osmotic pressure on the inside of these little membrane vesicles, this internal pressure puts a tension on the membrane, which tries to expand. We proposed that it could do so through the spontaneous transfer of material from other vesicles nearby that have less internal pressure because they have less genetic material inside."

In order to test their theory, the researchers first constructed simple model "protocells," in which they filled fatty-acid vesicles with either a sucrose solution or the same solvent without sucrose. The sucrose solution created a greater osmotic pressure inside the vesicles than the solvent alone. The membranes of the simple vesicles were not as sophisticated as the membranes of today’s living cells, said Szostak. However, they closely resembled the kinds of primordial vesicles that might have existed at the beginning of evolution.

When the scientists mixed the two vesicles, they observed that the ones with sucrose – in which there was greater membrane tension – did, indeed, grow by drawing membrane material from those without sucrose. "Once we had some understanding that this process worked, we moved on to more interesting versions, in which we loaded the vesicles with genetic molecules," said Szostak. The researchers conducted the same competition tests using vesicles loaded with the basic molecular building blocks of genetic material, called nucleotides. Next, they used RNA segments, and finally a large, natural RNA molecule. In all cases, they saw that the vesicles swollen with genetic material grew, while those with no genetic material shrank.

It is important to note, said Szostak, the concentrations of genetic material that his group used were comparable to those found in living cells. "In contrast to the earlier idea that Darwinian competition at the cellular level had to wait until the evolution of lipid-synthesizing ribozymes or structural RNAs, our results show that all you would need is to have the RNA replicating," said Szostak. "The cells that had RNA that replicated better -- and ended up with more RNA inside -- would grow faster. So, there is a direct coupling between how well the RNA replicates and how quickly the cell can grow. It’s just based on a physical principle and would emerge spontaneously," he said.

According to Szostak, the next step in the research will depend on another major effort under way in his laboratory to create artificial, replicating RNA molecules. "If we can get self-replicating RNAs, then we can put them into these simple membrane compartments and hope to actually see this competitive process of growth that we are hypothesizing," he said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>