Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle between bubbles might have started evolution

03.09.2004


Howard Hughes Medical Institute researchers are proposing that the first battle for survival-of-the-fittest might have played out as a simple physical duel between fatty bubbles stuffed with genetic material. The scientists suggest that genetic material that replicated quickly may have been all the bubbles needed to edge out their competitors and begin evolving into more sophisticated cells.



This possibility, revealed by laboratory experiments with artificial fatty acid sacs, is in sharp contrast to a current theory of the earliest evolution of cells, which suggests that cellular evolution was driven by primordial genetic machinery that actively synthesized cell membranes or otherwise influenced cell stability or division.

The researchers, led by Howard Hughes Medical Institute investigator Jack W. Szostak, published their findings in the September 3, 2004, issue of the journal Science. Szostak and first author Irene Chen, both from Massachusetts General Hospital and Harvard Medical School, collaborated on the studies with Richard Roberts of the California Institute of Technology.


Cells are basically sacs encapsulated by bilayered membranes of fatty acids and other lipids, plus proteins. A central question in evolution is how simple versions of these cells, or vesicles, first arose and began the process of competition that drove the evolution of life. "Most of the previous thinking about how cells grew and evolved was based on the idea of the initial evolution of structural RNAs or ribozymes -- enzymes that could synthesize membrane molecules," said Szostak. The ribozymes might have made more membrane material while the structural RNAs might have formed a cytoskeleton that influenced stability, shape, growth or division, he said.

However, Szostak and his colleagues theorized that a far simpler physical process might explain why cells would compete with one another for the materials necessary to expand their size. "We proposed that the genetic material could drive the growth of cells just by virtue of being there," he said. "As the RNA exerts an osmotic pressure on the inside of these little membrane vesicles, this internal pressure puts a tension on the membrane, which tries to expand. We proposed that it could do so through the spontaneous transfer of material from other vesicles nearby that have less internal pressure because they have less genetic material inside."

In order to test their theory, the researchers first constructed simple model "protocells," in which they filled fatty-acid vesicles with either a sucrose solution or the same solvent without sucrose. The sucrose solution created a greater osmotic pressure inside the vesicles than the solvent alone. The membranes of the simple vesicles were not as sophisticated as the membranes of today’s living cells, said Szostak. However, they closely resembled the kinds of primordial vesicles that might have existed at the beginning of evolution.

When the scientists mixed the two vesicles, they observed that the ones with sucrose – in which there was greater membrane tension – did, indeed, grow by drawing membrane material from those without sucrose. "Once we had some understanding that this process worked, we moved on to more interesting versions, in which we loaded the vesicles with genetic molecules," said Szostak. The researchers conducted the same competition tests using vesicles loaded with the basic molecular building blocks of genetic material, called nucleotides. Next, they used RNA segments, and finally a large, natural RNA molecule. In all cases, they saw that the vesicles swollen with genetic material grew, while those with no genetic material shrank.

It is important to note, said Szostak, the concentrations of genetic material that his group used were comparable to those found in living cells. "In contrast to the earlier idea that Darwinian competition at the cellular level had to wait until the evolution of lipid-synthesizing ribozymes or structural RNAs, our results show that all you would need is to have the RNA replicating," said Szostak. "The cells that had RNA that replicated better -- and ended up with more RNA inside -- would grow faster. So, there is a direct coupling between how well the RNA replicates and how quickly the cell can grow. It’s just based on a physical principle and would emerge spontaneously," he said.

According to Szostak, the next step in the research will depend on another major effort under way in his laboratory to create artificial, replicating RNA molecules. "If we can get self-replicating RNAs, then we can put them into these simple membrane compartments and hope to actually see this competitive process of growth that we are hypothesizing," he said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>