Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battle between bubbles might have started evolution

03.09.2004


Howard Hughes Medical Institute researchers are proposing that the first battle for survival-of-the-fittest might have played out as a simple physical duel between fatty bubbles stuffed with genetic material. The scientists suggest that genetic material that replicated quickly may have been all the bubbles needed to edge out their competitors and begin evolving into more sophisticated cells.



This possibility, revealed by laboratory experiments with artificial fatty acid sacs, is in sharp contrast to a current theory of the earliest evolution of cells, which suggests that cellular evolution was driven by primordial genetic machinery that actively synthesized cell membranes or otherwise influenced cell stability or division.

The researchers, led by Howard Hughes Medical Institute investigator Jack W. Szostak, published their findings in the September 3, 2004, issue of the journal Science. Szostak and first author Irene Chen, both from Massachusetts General Hospital and Harvard Medical School, collaborated on the studies with Richard Roberts of the California Institute of Technology.


Cells are basically sacs encapsulated by bilayered membranes of fatty acids and other lipids, plus proteins. A central question in evolution is how simple versions of these cells, or vesicles, first arose and began the process of competition that drove the evolution of life. "Most of the previous thinking about how cells grew and evolved was based on the idea of the initial evolution of structural RNAs or ribozymes -- enzymes that could synthesize membrane molecules," said Szostak. The ribozymes might have made more membrane material while the structural RNAs might have formed a cytoskeleton that influenced stability, shape, growth or division, he said.

However, Szostak and his colleagues theorized that a far simpler physical process might explain why cells would compete with one another for the materials necessary to expand their size. "We proposed that the genetic material could drive the growth of cells just by virtue of being there," he said. "As the RNA exerts an osmotic pressure on the inside of these little membrane vesicles, this internal pressure puts a tension on the membrane, which tries to expand. We proposed that it could do so through the spontaneous transfer of material from other vesicles nearby that have less internal pressure because they have less genetic material inside."

In order to test their theory, the researchers first constructed simple model "protocells," in which they filled fatty-acid vesicles with either a sucrose solution or the same solvent without sucrose. The sucrose solution created a greater osmotic pressure inside the vesicles than the solvent alone. The membranes of the simple vesicles were not as sophisticated as the membranes of today’s living cells, said Szostak. However, they closely resembled the kinds of primordial vesicles that might have existed at the beginning of evolution.

When the scientists mixed the two vesicles, they observed that the ones with sucrose – in which there was greater membrane tension – did, indeed, grow by drawing membrane material from those without sucrose. "Once we had some understanding that this process worked, we moved on to more interesting versions, in which we loaded the vesicles with genetic molecules," said Szostak. The researchers conducted the same competition tests using vesicles loaded with the basic molecular building blocks of genetic material, called nucleotides. Next, they used RNA segments, and finally a large, natural RNA molecule. In all cases, they saw that the vesicles swollen with genetic material grew, while those with no genetic material shrank.

It is important to note, said Szostak, the concentrations of genetic material that his group used were comparable to those found in living cells. "In contrast to the earlier idea that Darwinian competition at the cellular level had to wait until the evolution of lipid-synthesizing ribozymes or structural RNAs, our results show that all you would need is to have the RNA replicating," said Szostak. "The cells that had RNA that replicated better -- and ended up with more RNA inside -- would grow faster. So, there is a direct coupling between how well the RNA replicates and how quickly the cell can grow. It’s just based on a physical principle and would emerge spontaneously," he said.

According to Szostak, the next step in the research will depend on another major effort under way in his laboratory to create artificial, replicating RNA molecules. "If we can get self-replicating RNAs, then we can put them into these simple membrane compartments and hope to actually see this competitive process of growth that we are hypothesizing," he said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>