Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue study finds antioxidant protects metal-eating plants

02.09.2004


An antioxidant, a type of compound that prevents certain types of damage to living cells, appears to allow some kinds of plants to thrive on metal-enriched soils that typically kill other plants, says a Purdue University scientist.



This finding, published in the current issue of The Plant Cell, provides an important new insight for the development of plants that could be used to help clean polluted sites. The work also answers a fundamental question for researchers studying how certain types of plants tolerate levels of metals in their tissues that are toxic to most other plants. "We were able to clearly establish for the first time that plants that create and accumulate high cellular levels of the antioxidant glutathione are much more nickel tolerant," said David Salt, associate professor of plant molecular physiology in Purdue’s horticulture department.

The term antioxidant generally refers to a broad class of compounds that protect cells from damage otherwise caused by exposure to certain highly reactive compounds. Understanding the mechanism behind nickel tolerance provides an important tool for researchers like Salt, whose goal is to develop plants that remove toxic metals from the environment in a process known as phytoremediation, or extract useful metals from soil, a process known as phytomining.


While previous research has shown where metals reside in a plant’s cell, this is some of the first data showing how plants protect themselves from the damaging effects of those metals. "One major hurdle to developing hyperaccumulating plants is toxicity," said John Freeman, first author of the paper and a doctoral student working with Salt. "For a plant to hyperaccumulate metal, it has to be able to tolerate metal toxicity." A nearly ubiquitous antioxidant, glutathione plays a critical role in minimizing oxidative stress, or damage caused by highly reactive compounds, Salt said.

Plants require metals like nickel in minute quantities for certain metabolic processes, but at high levels metals can damage membranes, DNA and other cell components. Most plants try to keep the levels of metals in their cells at a minimum, but plants called metal hyperaccumulators have the unique ability to build up unusually high levels of metals in their tissues without any ill effect.

Previous research indicates that hyperaccumulators store metals in a specialized cell compartment called the vacuole. Sequestered in the vacuole, nickel and other metals can’t damage other parts of the cell. But nickel still must travel within the cell in order to enter the vacuole in the first place, Salt said. "To get to the vacuole, the nickel has to traverse the interior of the cell, where most of the plant’s sensitive biochemical processes reside," he said. "So we’ve been interested in finding out if there’s something in the cell’s interior that protects it from oxidative damage as the metal crosses the cell."

In this study, Salt and his colleagues sampled a number of closely related plants that grow on soils naturally enriched in nickel. These plants ranged from those that didn’t accumulate any nickel to the hperaccumulators that built up almost 3 percent nickel by weight.

He found that the concentration of glutathione was well correlated with a plant’s ability to accumulate nickel. "This correlation makes good sense," Salt said. "If you accumulate a lot of nickel, then you will need the ability to resist high levels of oxidative stress." Correlation doesn’t prove causation, however, so the next step in Salt’s study was to establish that glutathione played a functional role in nickel tolerance.

He and his colleagues isolated a gene called SAT, and inserted it into a model lab plant called Arabidopsis thaliana, which does not normally tolerate nickel. The gene SAT produces an enzyme called serine acetyltransferase, which plays a role in producing glutathione in hyperaccumulating plants.

When Salt grew both normal Arabidopsis and those containing the SAT gene on a nickel-containing medium, the normal plants failed to grow and showed signs of severe membrane damage, an indicator of oxidative stress. The plants with the inserted gene thrived, showing no signs of membrane damage.

Going one step further, Salt conducted another experiment in which he exposed the Arabidopsis containing the SAT gene to a compound that inhibits their ability to make glutathione. When grown on nickel, these plants also suffered high levels of oxidative damage, just like their normal counterparts. "This confirms that it really is glutathione that’s responsible for nickel tolerance," Freeman said.

This research is part of a larger gene discovery initiative involving Purdue’s Center for Phytoremediation Research and Development, a multidisciplinary research center dedicated to developing a "molecular toolbox" that will provide the genetic information to develop plants ideally suited to the phytoremediation of polluted sites. Technologies developed at the center will be commercialized through a partnership with the Midwest Hazardous Substance Research Center, a U.S. Environmental Protection Agency regional hazardous substance research center.

Also participating in this project were undergraduate student Ken Nieman, technician Carrie Albrecht and research scientist Wendy Peer of Purdue; Michael W. Persans, who was a postdoctoral scientist in Salt’s laboratory and now has a position at the University of Texas Pan-American; and Ingrid J. Pickering of the Stanford Synchrotron Radiation Laboratoty. Funding was provided by The National Science Foundation, the U.S. Department of Energy and the National Institutes of Health.

Jennifer Cutraro | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>