Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover proteins involved in spread of HIV-1 infection

02.09.2004


An international team of researchers has identified a family of proteins that are involved in HIV-1 budding from host cells, and are therefore likely to be essential for the spread of the virus. Targeting these proteins and the proteins they interact with could lead to potential new therapies for HIV-1 as well as other viruses that use the same budding mechanism.



The research appears as the "Paper of the Week" in the August 20 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Like other enveloped viruses, HIV-1 needs to bud from host cells in order to spread infection to other cells. To do this, the virus hijacks a pathway that normally sorts proteins into cellular compartments called multivesicular bodies (MVB) for destruction by lysosomes. The HIV Gag protein contains a specific sequence of amino acids which it uses to recruit the human tumor susceptibility gene 101 (TSG101). The virus then uses TSG101 to take control of the protein sorting and vesicle formation machinery and use it for its own purposes.


Previously, scientists determined that the yeast version of TSG101, called Vps23p, binds to two other proteins, Vps28p and Vps37p, to form the Endosomal Sorting Complex Required for Transport (ESCRT-I) which then participates in the protein sorting and packaging process.

However, the analogous pathway in humans is not quite as defined--scientists have found the human equivalent of Vps28p, but not Vps37p. Missing this protein has made it hard to understand what exactly goes on in humans. Now, Wesley Sundquist, professor of biochemistry at the University of Utah, and his colleagues report that they have found the human version of Vps37p. "Our paper describes the identification of the human VPS37 proteins. This is a necessary step both for understanding how HIV-1 buds from cells and for defining the MVB pathway in human cells," says Sundquist.

An unexpected result was that there was more than one VPS37 protein in human cells. In fact, there was a family of four different VPS37 proteins that the scientists named VPS37A-D. Says Sundquist, "We do not yet fully understand why humans have four different VPS37 proteins, but we assume that this provides greater potential for regulating the MVB pathway, which is responsible for targeting a number of important cellular proteins for lysosomal destruction."

The scientists focused their efforts on one of the proteins,VPS37B, and found that it binds to TSG101 through a conserved sequence of amino acids that is also present in all of the other Vps37 proteins. They also showed that VPS37B is a subunit of the human ESCRT-I complex, and that it is capable of recruiting the ESCRT-I complex to support HIV budding in vivo.

Sundquist and colleagues also managed to identify regions of TSG101 that bind to VPS28 and VPS37, and showed that theVPS28 binding region is essential for HIV-1 budding. This information could potentially be used to develop drugs that target these binding regions and disrupt HIV-1 budding, preventing infection from spreading.

These results were independently confirmed by another research group led by Harald Stenmark of the Norwegian Radium Hospital in Montebello, Norway. Stenmark’s group also discovered the same group of human VPS37 proteins and published their results in the September issue of Molecular Biology of the Cell.

Says Sundquist, "In a general sense, I think that it is important to identify all of the cellular proteins that are involved in HIV replication, and it appears likely that the newly identified VPS37 proteins play a direct role in HIV budding. In principle, the VPS37 proteins are therefore potential new drug targets, though of course many significant hurdles remain to be overcome, such as inhibitor screening and potential problems with cellular toxicity."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>