Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genetic disorder yields insight into genes and cognition

02.09.2004


Researchers attempting to understand the stunningly complex machinery by which genes give rise to the brain often find invaluable clues in genetic disorders that affect brain structure and function.



Andreas Meyer-Lindenberg and his colleagues have gained just such clues by studying the brain function of sufferers of Williams syndrome (WS). This rare disorder, caused by the deletion of a specific chromosome segment, can cause mental retardation, physical abnormalities, and personality disorder. But most intriguing to Meyer-Lindenberg and his colleagues is that the disorder causes a specific inability to visualize an object as a set of parts--for example, to assemble a simple piece of furniture.

In brain-imaging studies of people with WS, the researchers sought to shed light on the neurological malfunction that underlies this inability. In particular, they sought to determine whether the functional disorder could reveal the "modularity" of the processing of visual information in the brain’s visual cortex.


The visual cortex is basically organized into two processing pathways--a ventral pathway that processes the identity of objects and a dorsal pathway that processes spatial information on them. Thus, reasoned the researchers, the weakness in "visuospatial construction" in people with WS likely lies in the dorsal pathway.

In their experiments, the researchers performed functional magnetic resonance imaging (fMRI) of the brains of 13 volunteers with WS, as they asked the volunteers to perform two perceptual tasks. Such fMRI imaging involves using harmless magnetic fields and radio waves to image blood flow in the brain, which reveals brain activity.

In one set of experiments, the researchers asked the subjects to determine whether sets of geometric shapes could be assembled into a square. In another, they asked the patients to concentrate on either the identity of images of faces or houses, or their location. In normal people, attention to identity would activate the ventral stream, and attention to location would activate the dorsal stream.

The fMRI images revealed that the people with WS showed significantly lower neural activity in the dorsal stream of the visual cortex.

Higher-resolution structural MRI imaging revealed a reduction in the volume of gray matter in an adjacent brain region. The researchers’ studies also showed that impaired input from this region could cause the reduced function.

The researchers concluded that "Our observations confirm a longstanding hypothesis about dorsal stream dysfunction in WS, demonstrate effects of a localized abnormality on visual information processing in humans, and define a systems-level phenotype for mapping genetic determinants of visuoconstructive function."

Such insights, they said, should help scientists trace the genetic origin and molecular causes of the disorder.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>