Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify the genome’s controlling elements

02.09.2004


Scientists have churned out genome sequences for everything from fungi to dogs to chimps, and they won’t be letting up any time soon. However, because a genome sequence is little more than a static list of chemicals--like, say, a parts list for a 747 airplane--scientists are increasingly turning their attention to figuring out how living organisms put their genes to work. Using yeast as a testing ground, researchers at Whitehead Institute for Biomedical Research have for the first time revealed all the "controlling elements" of an entire genome--findings that may soon contribute to a new way of understanding human health and disease. "This is really the next stage in human genome research," says Whitehead Member Richard Young, who headed the project together with Whitehead Fellow Ernest Fraenkel and MIT Computer Scientist David Gifford.



Key to understanding how the genome is controlled are gene regulators, also known as transcription factors. These small molecules intermittently land on a region of DNA, close to a particular gene, and then switch that gene on. They can also influence the amount of protein that the gene will produce. Many diseases, such as diabetes and cancer, are associated with mutated gene regulators, which is one reason why scientists are so interested in them.

The problem is that very few of these regulators have been identified in any organism. Locating their landing sites is essential to identifying their function, and therein lies the rub: Gene regulators are hard to find. They typically just land on a small stretch of DNA, do their job, and then take off again. And owing to the vastness of the genome, locating just one gene regulator with conventional lab tools can take many years. The Whitehead/MIT team, in the September 2 issue of the journal Nature, report developing a method for scanning an entire genome and quickly identifying the precise landing sites for these regulators.


This work builds upon research reported by Young in the journal Science in October 2002, in which he mapped the general locations of approximately half the gene regulators in yeast. "The results of the Science paper were pretty low-resolution," says Young. "We were only able to identify in a general way regions where these gene regulators landed. In this paper, we’ve located all 203 regulators in yeast," and using tools developed in Fraenkel’s lab have also been able to nail down the exact landing points. As a result, scientists now can begin to understand how genes and their regulators "talk" to each other. According to Fraenkel, knowing these communication patterns ultimately will have a profound influence on our understanding of everything from infectious disease to cloning.

To eavesdrop on these cellular conversations, graduate student Chris Harbison from Young’s lab and postdoctoral researcher Ben Gordon from Fraenkel’s lab combined the latest biological tools with new computational methods.

Harbison took yeast cells and subjected them all to a dozen nutritional, chemical, and temperature environments. "We tried to come up with different conditions that a yeast cell would encounter in its natural habitat," says Harbison.

Gene regulators come out of hiding and do their job in response to environmental conditions, but they don’t all respond to the same kinds of predicaments. Running the cells through a wide spectrum of stimuli was a way of waking up all the regulators--in a sense, shaking the bushes and then nabbing them once they’re out.

Next, Harbison placed gene fragments associated with these regulators onto a series of microarrays--small dime-sized silicon or glass chips that contain thousands of pieces of DNA--which allowed him to come up with a list of approximate locations. Gordon and Fraenkel created computer algorithms that fused Harbison’s data with data from other yeast species in order to find the exact landing points. "The microarray information is like a noisy telephone call," says Fraenkel. "We needed to find the words in all the static before we could understand what they meant."

The next challenge is to scale the platform so it can tackle human cells, something that the researchers are gearing up to do. In fact, a paper from Young’s lab in the journal Science last February anticipated this possibility. The team reported locating in human cells all the genome-wide landing sites of a handful of gene regulators associated with type 2 diabetes, revealing some surprising mechanisms of the disease. "That paper is just the beginning of what we’ll soon be doing in human cells," Young declares.

Even though the yeast genome’s 203 regulators are a far cry from the roughly 2,000 in human cells, Young explains, "now we have the technology and the concepts to get started on decoding the human genome."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>