Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stuck on you: scientists lay bare secrets of bacterial attachment proteins


An unprecedented picture of how bacteria latch on to human cells has been published by UK, French and US scientists. They have produced a finely detailed model of one of the tools used by some of the nastiest varieties of the stomach bug, Escherichia coli, to stick to and gain entry to host cells.

Led by senior author Dr Stephen Matthews, Reader in Chemical and Structural Biology at Imperial College London, the research is published in the latest issue of the journal Molecular Cell (*See Notes to Eds).

Bacteria need to stick to a host cell, before colonising and attacking it, and causing infection. They do this with the help of proteins on their outer surface called adhesins and invasins. The former attaches itself to the host cell and the latter assists the invasion. Together they define how aggressive or virulent the bacteria are at attacking the host.

Most families of adhesins belong to bacteria that cause a single disease, but the ’Dr’ family of Adhesins makes far more trouble: it is responsible for chronic diarrhoeal, intestinal and urinary tract infections, and is similar to some present in strains of Salmonella.

The researchers characterised the way in which the Dr Adhesins help bugs to cause multiple diseases because they use a very common receptor on the host cell membrane as an anchor point to attack. They target a receptor responsible for regulating one of the important human immune responses, known as Decay Acceleration Factor, or DAF.

"Cell adhesion is one of the first contacts between bacteria and host," said Dr Matthews. "Knowing the architecture of the bacteria target allows us to conceive ways to disrupt this adhesion, which may lead to potential therapeutic intervention."

Dr Matthews’ team at Imperial used nuclear magnetic resonance (NMR) spectroscopy to yield detailed insights into the structure of the two nanometre-wide Dr Adhesins.

Their work helps to resolve a long-standing debate amongst microbiologists; it leads to the reclassifying of the Dr Adhesins into a group of bacterial protein appendages known as ’fimbriae’.

These appendages are very difficult to see using the available electron microscopy techniques, and were originally classified as non-fibre or ’afimbrial’.

The new key piece of evidence emerged from some nifty protein engineering of the protein subunit, known as AfaE.

These subunits make up the fibre and cannot fold properly as proteins as they are synthesised with a piece of sequence information missing. In nature, the adjacent subunit possesses this bit of missing information, and ’lends’ it to complete the subunit and build the fibre, in a process known as donor strand complementation.

In the lab, the Imperial team artificially reintroduced the missing protein sequence so that it could complement itself and fold correctly, demonstrating that the fibres assemble in an similar fashion to fimbrial proteins.

The research was principally funded by the Wellcome Trust, and led by the Imperial team with colleagues at the Institut Pasteur, France, the Universities of Edinburgh and Oxford, the University of Texas, Case Western Reserve University, USA, and Adprotech Ltd, UK.

Tom Miller | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>