Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheating in nature: why rotting food could hold the key

01.09.2004


From salting and drying to pickling and irradiating, humans have devised many ingenious ways of preserving their food from spoilage by microbes. The question of what microbes gain from making food go off in the first place has attracted less attention, but research presented at this years British Ecological Society Annual Meeting will shed new light on the problem.



Speaking at the meeting, taking place at Lancaster University on 7-9 September 2004, Dr Dave Wilkinson of Liverpool John Moores University and Dr Thomas Sherratt of Carleton University in Canada will cast doubt over Professor Dan Janzen’s seductive 1977 theory that microbes make food go off in order to make it objectionable or unusable by the larger animals they are competing with for food.

Janzen illustrated his theory thus: imagine a child left alone for a short time in the kitchen with two strawberries, one fresh and one mouldy. If the youngster pops the fresh one into its mouth, then the microbe has won.


Wilkinson and Sherratt used mathematical models for the first time to test Janzen’s theory . According to Wilkinson: “In our current model it is difficult to see how spoiling behaviour could evolve as an adaptation to deter larger animals. Janzen’s idea, while intuitively attractive, may be unworkable. Our main result is that in the mathematical model we have developed so far, we have been unable to find realistic conditions under which cheats will not undermine the system.”

“If microbes are expending energy producing chemicals to deter birds and other animals from eating their food, then what is to stop them from cheating by not producing the chemical but just relying on protection from chemicals produced by other microbes?”

As well as challenging Janzen’s theory, Wilkinson and Sherratt’s work could help ecologists understand cheating in other areas of nature. “The problem of cheats destroying systems of mutually cooperating organisms is a major problem in evolutionary ecology. Janzen’s system has great merit because it is relatively simple and therefore open to mathematical study, so it may yet help identify the conditions under which cooperation is favoured over cheating,” Wilkinson says.

Wilkinson and Sherratt are currently building more complex models to see if this helps rescue Janzen’s theory.

Dr Wilkinson will present his full findings at 08:40 on Thursday 9 September 2004.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>