Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecologists uncover biological benefits of sleeping around

01.09.2004


Females have traditionally been viewed as the choosy, monogamous sex compared to males, but recent genetic studies have revealed that females of many, if not most, animal species also mate multiply with different partners. However, understanding why females should do this has remained something of enigma.



Speaking at the British Ecological Society’s Annual Meeting, Dr William Hughes of the University of Sydney and Professor Jacobus Boomsma of the University of Copenhagen will announce the results of their experiments with Panamanian ants, which show that mating with many different males (polyandry) produces colonies that are more resistant to disease. According to Hughes: “This study shows that genetically diverse groups of social insects are more resistant to disease than genetically homogenous groups.”

Sex is a costly business for most animals, using precious energy and exposing the female to the risks of being predated or of catching a disease, notably those that are sexually transmitted. For many species ecologists don’t yet understand why females should engage in this costly behaviour because it has been hard to identify how the female benefits.


Using colonies of Panamanian leaf-cutting ants, which are highly polyandrous, Hughes and Boomsma used genetic markers to identify the fathers of particular ants. They then created small groups of genetically diverse ants (simulating colonies that result from queens that mate with multiple males) and of genetically homogenous ants (simulating colonies resulting from queens that mate with single males). They then studied which groups survived better after being infected with a virulent fungal parasite.

“The results of our study suggest that social insect queens may benefit from mating with multiple males by making their colonies more genetically diverse and therefore more resistant to disease. This indicates females can get genetic benefits simply by mating with many males, as compared to going through the laborious process of choosing males. The results suggest one reason why some of the largest and most complex insect societies appear to suffer so little from disease,” Hughes says.

Dr Hughes will present their full findings at 09:00 on Wednesday 8 September 2004.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>