Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we identify escaped salmon by means of their DNA?

01.09.2004


Escaped salmon are a problem for the fish-farming industry. Is it possible to identify the fish-farm from which salmon have escaped by testing a sample of their DNA? Scientists at the Institute of Marine Research in Bergen have been looking into the prospects of doing so.



Escapees are a major problem for fish farming, not only for the farmers who lose their fish, but also for stocks of wild salmon. This is because cultivated salmon have been bred to thrive in an artificial environment without predators, with plenty of food and without the need to migrate and orient over huge geographic distances. When these characteristics of farmed salmon are cross-bred into wild salmon stocks, we end up with salmon that are less well adapted to life in their natural environment, and such stocks suffer higher mortality rates.

For this reason, it has been suggested that natural DNA markers that are found in all salmon might be used to trace escapees back to the ongrowing farm from which they have escaped, so that future inspections could be concentrated on farms that tend to lose fish.


Breeding line identified with 95% certainty

In order to find out whether this is actually possible, scientists at the Institute of Marine Research carried out a pilot study. The first things that they found out were that there are major differences among breeding lines, and that they could identify the line that any given salmon comes from, to a certainty of better than 95%.

However, in the aquaculture industry, roe and fish are sorted, grouped and distributed from breeding populations to broodstock stations and on to hundreds of smolt farms, and then further on to hundreds more ongrowing farms. These logistical conditions mean that DNA profiles based on references from breeding plants or broodstocks would not be sufficient to identify the ongrowing farm from which an escaped fish had come.

Useful when many fish have escaped at the same time

If large numbers of escaped fish are discovered soon after they have escaped, however, DNA profiles can still identify the ongrowing farm that they came from, at least in some cases. In the pilot study, the scientists took samples from seven different deliveries of smolt to four ongrowing farms. With the aid of seven natural DNA markers it was possible to identify the fish farm from which seven out of ten “escapees” had come. This means that the method could be of interest in major escape episodes.

To the present day, there exists no professional monitoring system for aquaculture, in contrast to the monitoring programmes that are under way in Norway’s marine regions and in traditional fisheries.

Any method of identifying escaped fish would be dependent on a operational monitoring system capable of discovering escapees rapidly, sampling them and sending the samples for analysis.

Øystein Skaala, | alfa
Further information:
http://www.imr.no
http://www.imr.no/english/main

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>