Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we identify escaped salmon by means of their DNA?

01.09.2004


Escaped salmon are a problem for the fish-farming industry. Is it possible to identify the fish-farm from which salmon have escaped by testing a sample of their DNA? Scientists at the Institute of Marine Research in Bergen have been looking into the prospects of doing so.



Escapees are a major problem for fish farming, not only for the farmers who lose their fish, but also for stocks of wild salmon. This is because cultivated salmon have been bred to thrive in an artificial environment without predators, with plenty of food and without the need to migrate and orient over huge geographic distances. When these characteristics of farmed salmon are cross-bred into wild salmon stocks, we end up with salmon that are less well adapted to life in their natural environment, and such stocks suffer higher mortality rates.

For this reason, it has been suggested that natural DNA markers that are found in all salmon might be used to trace escapees back to the ongrowing farm from which they have escaped, so that future inspections could be concentrated on farms that tend to lose fish.


Breeding line identified with 95% certainty

In order to find out whether this is actually possible, scientists at the Institute of Marine Research carried out a pilot study. The first things that they found out were that there are major differences among breeding lines, and that they could identify the line that any given salmon comes from, to a certainty of better than 95%.

However, in the aquaculture industry, roe and fish are sorted, grouped and distributed from breeding populations to broodstock stations and on to hundreds of smolt farms, and then further on to hundreds more ongrowing farms. These logistical conditions mean that DNA profiles based on references from breeding plants or broodstocks would not be sufficient to identify the ongrowing farm from which an escaped fish had come.

Useful when many fish have escaped at the same time

If large numbers of escaped fish are discovered soon after they have escaped, however, DNA profiles can still identify the ongrowing farm that they came from, at least in some cases. In the pilot study, the scientists took samples from seven different deliveries of smolt to four ongrowing farms. With the aid of seven natural DNA markers it was possible to identify the fish farm from which seven out of ten “escapees” had come. This means that the method could be of interest in major escape episodes.

To the present day, there exists no professional monitoring system for aquaculture, in contrast to the monitoring programmes that are under way in Norway’s marine regions and in traditional fisheries.

Any method of identifying escaped fish would be dependent on a operational monitoring system capable of discovering escapees rapidly, sampling them and sending the samples for analysis.

Øystein Skaala, | alfa
Further information:
http://www.imr.no
http://www.imr.no/english/main

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>