Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we identify escaped salmon by means of their DNA?

01.09.2004


Escaped salmon are a problem for the fish-farming industry. Is it possible to identify the fish-farm from which salmon have escaped by testing a sample of their DNA? Scientists at the Institute of Marine Research in Bergen have been looking into the prospects of doing so.



Escapees are a major problem for fish farming, not only for the farmers who lose their fish, but also for stocks of wild salmon. This is because cultivated salmon have been bred to thrive in an artificial environment without predators, with plenty of food and without the need to migrate and orient over huge geographic distances. When these characteristics of farmed salmon are cross-bred into wild salmon stocks, we end up with salmon that are less well adapted to life in their natural environment, and such stocks suffer higher mortality rates.

For this reason, it has been suggested that natural DNA markers that are found in all salmon might be used to trace escapees back to the ongrowing farm from which they have escaped, so that future inspections could be concentrated on farms that tend to lose fish.


Breeding line identified with 95% certainty

In order to find out whether this is actually possible, scientists at the Institute of Marine Research carried out a pilot study. The first things that they found out were that there are major differences among breeding lines, and that they could identify the line that any given salmon comes from, to a certainty of better than 95%.

However, in the aquaculture industry, roe and fish are sorted, grouped and distributed from breeding populations to broodstock stations and on to hundreds of smolt farms, and then further on to hundreds more ongrowing farms. These logistical conditions mean that DNA profiles based on references from breeding plants or broodstocks would not be sufficient to identify the ongrowing farm from which an escaped fish had come.

Useful when many fish have escaped at the same time

If large numbers of escaped fish are discovered soon after they have escaped, however, DNA profiles can still identify the ongrowing farm that they came from, at least in some cases. In the pilot study, the scientists took samples from seven different deliveries of smolt to four ongrowing farms. With the aid of seven natural DNA markers it was possible to identify the fish farm from which seven out of ten “escapees” had come. This means that the method could be of interest in major escape episodes.

To the present day, there exists no professional monitoring system for aquaculture, in contrast to the monitoring programmes that are under way in Norway’s marine regions and in traditional fisheries.

Any method of identifying escaped fish would be dependent on a operational monitoring system capable of discovering escapees rapidly, sampling them and sending the samples for analysis.

Øystein Skaala, | alfa
Further information:
http://www.imr.no
http://www.imr.no/english/main

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>