Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve detection of diverse anthrax strains

31.08.2004


Scientists have capitalized on genomic data to define novel diagnostic tests and to gain insight into the evolutionary and genetic history of the deadly pathogen Bacillus anthracis (anthrax).



Researchers at Northern Arizona University (NAU), the Translational Genomics Research Institute (TGen) and The Institute for Genomic Research (TIGR) used nearly 1000 single nucleotide polymorphisms (SNPs) to define the genetic and evolutionary types of several anthrax isolates with extremely high resolution.

The results are scheduled for publication online this week by the journal Proceedings of the National Academy of Sciences.


"This level of detail is not possible without whole genome sequences from multiple strains," said the paper’s senior author Dr. Paul Keim, Director of Pathogen Genomics at TGen and the Cowden Endowed Chair of Microbiology at NAU. "This work now provides the raw material for highly specific and sensitive tests for anthrax in human cases, animal cases and within the environment. Specific and sensitive tests for this pathogen are needed for effective bio-defense and forensic investigation into previous events."

TIGR’s scientists sequenced the genomes of five isolates, or strains, of anthrax and then compared the results of each sequence to detect minute variations (SNPs). TGen and NAU researchers used that data to develop a typing, or identification, system for various anthrax strains.

"This is the first time that a new bacterial typing system has been developed from an analysis of multiple sequenced genomes of the same species," said Dr. Jacques Ravel, who led the sequencing effort at TIGR. "Comparing the sequence of entire microbial genomes is helping scientists unravel the complex evolutionary history of this lethal agent."

The SNPs described in this work were highly stable. Only one SNP was not entirely stable across the entire study, which means that diagnostic and forensic tests developed using this information will have extremely low false positive, or misidentification rates, a crucial criterion for advanced tests. False positives from anthrax environmental tests would have an inordinate impact on public health should an outbreak occur.

The work also shows for the first time that how researchers "discover" DNA fingerprints is crucial to what they can be used for. The selection of anthrax strains for whole genome sequencing was guided by prior work on the large global anthrax collection, which maximized the information that was ultimately obtained from the whole genome sequencing effort. Similar efforts without such forethought would be ineffective at defining major bacterial populations.

This study shows that diverse strains of pathogens will not be recognized unless they are contained within the scope for the discovery process.

"That the genetic relationships of anthrax have been defined to a new level of precision provides a critical step toward future detection of this potential public threat," added Keim. "In addition, this study established a model for other biothreat pathogens, and common public health related diseases such as E. coli, Strep, Staph, and Salmonella."

Galen Perry | EurekAlert!
Further information:
http://www.tgen.org
http://www.tigr.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>