Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the surface of white blood cells to enhance immune system medicine

31.08.2004


White blood cells are the principle mediators of immune system function, yet efforts to influence their role in illness have been hampered due to a lack of understanding of the surface structure of these cells - until now. Dartmouth Medical School researchers characterize the structure of white blood cells and challenge assumptions about how a certain immunodeficiency disorder affects the white blood cell surface in the September 1 issue of Blood, the journal of the American Society of Hematology. Their findings could have a large impact on treatments for autoimmune diseases such as diabetes, rheumatoid arthritis and lupus, as well as AIDS and cancer metastasis.



The researchers, led by Henry N. Higgs, assistant professor of biochemistry at Dartmouth Medical School used scanning electron microscopy to analyze the finger-like projections coating white blood cells known as microvilli. "If you asked most medical scientists what a white blood cell looked like they would say a smooth sphere that floats around in the blood, but, in fact, they are not smooth at all - they have these wonderful invaginations and protrusions coming off of them," explained Higgs, who is also a member of the Immunology and Cancer Immunotherapy Research Program at Norris Cotton Cancer Center and a member of the program in immunology.

Higgs and his lab focused much of their work on lymphocytes a type of white blood cell that have a number of roles in the immune system, including the production of antibodies and other substances that fight infection and disease. An essential feature of lymphocytes’ ability to mount an immune response is their ability to migrate from the blood into infected tissues. The process of squeezing between the cells lining blood vessel walls and into the surrounding tissue is known as ’extravasation.’ Research indicates that microvilli may play a key role in this process. They allow white blood cells hurtling through the bloodstream at speeds analogous to a car traveling at 500 miles per hour to attach to the vessel wall and roll to a stop.


Disruption of the putative receptors on microvilli tips that mediate this process could have significant therapeutic benefits. Drugs that eliminate lymphocyte microvilli could lead to a less toxic form of immune suppression for transplant recipients. Since many cancer cells share the same mechanism of extravasation as lymphocytes, ablating microvilli could also prevent metastasis of cancer cells to distant parts of the body. Similarly, by thwarting lymphocyte migration to deposits of cholesterol in coronary arteries, drugs could prevent the atherosclerosis that leads to heart attacks.

Higgs extended this work to compare lymphocytes in patients with Wiskott-Aldrich syndrome, a hereditary immune disorder that affects males and manifests itself through low platelets and recurrent bacterial infections. These conditions can eventually cause a fatal hemorrhage or infection in these patients. Higgs and his team found no differences in the length or density of microvilli on the lymphocytes, despite expressing little to no Wiskott-Aldrich syndrome protein (WASP)Ñthe protein whose deficiency leads to the syndrome. This challenges the long-held view that an absence of WASP led to the inability to form microvilli on lymphocytes.

The study represents the first quantitative characterization of lymphocyte microvilli and, in addition to characterizing their length and density, the research indicates that microvilli are dynamic structures that rapidly alternate between states of assembly and disassembly. This means that if researchers were able to biochemically dissect mechanisms by which microvilli assemble and segregate, they would be able to use this knowledge to develop immunosuppressive or anti-metastatic agents, enhancing the treatment of cancer and other diseases. Higgs and other Dartmouth medical researchers are working to investigate this promising tool through funding from a $12 million Centers of Biomedical Research and Excellence (COBRE) grant awarded by the NIH in 2003.

The researchers will continue their work in hopes of determining the proteins that assemble lymphocyte microvilli. Identification of these proteins would provide a specific target for drug therapy. "If there is one key protein involved in this process then there is the potential to basically figure out what chemical you could jam into a site on this protein -- sort of like wedging a door open so it doesn’t shut," explained Higgs. "And we want to make sure that wedge doesn’t prop any other doors open that should stay closed."

Other institutions that took part in this research are the University of Toronto and Ludwig-Maximilians University in Munich, Germany. The research was supported by the American Cancer Society, the National Institutes of Health, the Pew Biomedical Scholars and the Canadian Institutes of Health Research.

Andrew Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>