Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the surface of white blood cells to enhance immune system medicine

31.08.2004


White blood cells are the principle mediators of immune system function, yet efforts to influence their role in illness have been hampered due to a lack of understanding of the surface structure of these cells - until now. Dartmouth Medical School researchers characterize the structure of white blood cells and challenge assumptions about how a certain immunodeficiency disorder affects the white blood cell surface in the September 1 issue of Blood, the journal of the American Society of Hematology. Their findings could have a large impact on treatments for autoimmune diseases such as diabetes, rheumatoid arthritis and lupus, as well as AIDS and cancer metastasis.



The researchers, led by Henry N. Higgs, assistant professor of biochemistry at Dartmouth Medical School used scanning electron microscopy to analyze the finger-like projections coating white blood cells known as microvilli. "If you asked most medical scientists what a white blood cell looked like they would say a smooth sphere that floats around in the blood, but, in fact, they are not smooth at all - they have these wonderful invaginations and protrusions coming off of them," explained Higgs, who is also a member of the Immunology and Cancer Immunotherapy Research Program at Norris Cotton Cancer Center and a member of the program in immunology.

Higgs and his lab focused much of their work on lymphocytes a type of white blood cell that have a number of roles in the immune system, including the production of antibodies and other substances that fight infection and disease. An essential feature of lymphocytes’ ability to mount an immune response is their ability to migrate from the blood into infected tissues. The process of squeezing between the cells lining blood vessel walls and into the surrounding tissue is known as ’extravasation.’ Research indicates that microvilli may play a key role in this process. They allow white blood cells hurtling through the bloodstream at speeds analogous to a car traveling at 500 miles per hour to attach to the vessel wall and roll to a stop.


Disruption of the putative receptors on microvilli tips that mediate this process could have significant therapeutic benefits. Drugs that eliminate lymphocyte microvilli could lead to a less toxic form of immune suppression for transplant recipients. Since many cancer cells share the same mechanism of extravasation as lymphocytes, ablating microvilli could also prevent metastasis of cancer cells to distant parts of the body. Similarly, by thwarting lymphocyte migration to deposits of cholesterol in coronary arteries, drugs could prevent the atherosclerosis that leads to heart attacks.

Higgs extended this work to compare lymphocytes in patients with Wiskott-Aldrich syndrome, a hereditary immune disorder that affects males and manifests itself through low platelets and recurrent bacterial infections. These conditions can eventually cause a fatal hemorrhage or infection in these patients. Higgs and his team found no differences in the length or density of microvilli on the lymphocytes, despite expressing little to no Wiskott-Aldrich syndrome protein (WASP)Ñthe protein whose deficiency leads to the syndrome. This challenges the long-held view that an absence of WASP led to the inability to form microvilli on lymphocytes.

The study represents the first quantitative characterization of lymphocyte microvilli and, in addition to characterizing their length and density, the research indicates that microvilli are dynamic structures that rapidly alternate between states of assembly and disassembly. This means that if researchers were able to biochemically dissect mechanisms by which microvilli assemble and segregate, they would be able to use this knowledge to develop immunosuppressive or anti-metastatic agents, enhancing the treatment of cancer and other diseases. Higgs and other Dartmouth medical researchers are working to investigate this promising tool through funding from a $12 million Centers of Biomedical Research and Excellence (COBRE) grant awarded by the NIH in 2003.

The researchers will continue their work in hopes of determining the proteins that assemble lymphocyte microvilli. Identification of these proteins would provide a specific target for drug therapy. "If there is one key protein involved in this process then there is the potential to basically figure out what chemical you could jam into a site on this protein -- sort of like wedging a door open so it doesn’t shut," explained Higgs. "And we want to make sure that wedge doesn’t prop any other doors open that should stay closed."

Other institutions that took part in this research are the University of Toronto and Ludwig-Maximilians University in Munich, Germany. The research was supported by the American Cancer Society, the National Institutes of Health, the Pew Biomedical Scholars and the Canadian Institutes of Health Research.

Andrew Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>