Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How an insidious mutation fools DNA replication

31.08.2004


Biochemists have pinpointed how a flaw in DNA that is central to mutations in cancer and aging fools the cellular enzyme that copies DNA. Their finding explains how oxidative DNA damage -- a process long believed to underlie cancers and aging -- can create permanent genetic damage.

The Duke University Medical Center researchers’ findings were published online Aug. 22, 2004, by the journal Nature. The scientists were led by Associate Professor of Biochemistry Lorena Beese, Ph.D., and the paper’s lead author was Gerald Hsu, a Duke M.D./Ph.D. student. The other co-authors are Thomas Carell and Matthias Ober of Ludwig Maximillians University in Germany. Their research was supported mainly by the National Cancer Institute.

DNA is a double stranded molecule shaped like a spiral staircase. The two strands of the spiral are linked by sequences of molecular subunits, or bases, called nucleotides. The four nucleotides -- guanine, cytosine, adenine and thymine -- naturally complement one another like puzzle pieces. In normal DNA, a guanine matches with a cytosine, and an adenine with a thymine. However, stray reactive oxidizing molecules in the cell can alter guanine to become an "8-oxoguanine" that can lead to a mismatch.



This mismatch occurs in the process of replicating DNA, which begins when the two strands unzip. A protein enzyme called DNA polymerase then works its way along one "template" strand adding nucleotides to create a new double-stranded DNA. In the replication process, the polymerase draws the DNA strand through a small "active site" -- somewhat like a spaghetti strand being drawn through a Cheerio.

Normally, this "high-fidelity" polymerase accurately adds complementary nucleotides and detects any mistakes that have been made. These mistakes or mismatches reveal themselves as malformations that distort the active site -- like kinks in the spaghetti strand that would clog the Cheerio. Such malformations trigger a repair mechanism to correct the mismatch.

The researchers’ initial studies revealed that the polymerase biochemically "prefers" to mismatch an 8-oxoguanine with adenine rather than the correct cytosine. If not detected and corrected, such a mismatch leads to errors in the cell’s machinery that can trigger the uncontrolled growth of cancer or the death of cells in aging. However, researchers have long known that the 8-oxoguanine-adenine mismatch seems to readily avoid detection by the polymerase.

"There have been a number of studies of the kinetics and the biochemistry of this mismatch reaction, but it was not understood why this particular lesion evaded detection as well as it does," said Beese. "It is one of a series of such oxidative lesions, but it is considered the most mutagenic, which is why we concentrated on understanding it."

In the experiments, Hsu worked with the particularly sturdy polymerase enzyme from a thermostable strain of the bacterium, Bacillus stearothermophilus, which thrives in geothermal hot springs. He crystallized this enzyme along with a DNA strand that contained an 8-oxoguanine. Because the polymerase retains the ability to synthesize DNA in the crystal, Hsu then added either the correct (cytosine) or incorrect (adenine) nucleotides and observed the results.

Using X-ray crystallography, the researchers were able to deduce with great precision the structure of the protein and the DNA in the crystal. The series of crystals they analyzed constituted snapshots of the polymerase’s function as it created both accurate and mutated strands from the template.

The biochemists encountered a surprise when they analyzed the polymerase crystals with either the correct or mismatched nucleotides. "We saw that, ironically, when the polymerase binds the correct cytosine opposite 8-oxoguanine, the structure looked like DNA mispairs," said Beese. "This suggested that the enzyme would stall and not readily proceed with replication.

"But when we put in an incorrect adenine nucleotide, it looked like a normal base pair in how it interacted with the polymerase." The researchers’ analyses revealed that the mismatched combination of 8-oxoguanine and cytosine was distorted, like a kink in a spaghetti strand that would jam the active site. However, the mismatched 8-oxoguanine and adenine showed no distortion so would proceed smoothly through the polymerase to be incorporated into the new DNA.

"We were able to extend the replication process to show that there were no distortions that would be detected by the polymerase. This means that the DNA would continue to replicate with this mispair, and that could potentially lead to stable incorporation of a lethal mutation," said Beese.

In further analyses, Hsu confirmed that bacterial polymerase would behave just as did the human polymerase in preferring to incorporate the mismatch and failing to recognize it. Also, they found, if the 8-oxoguanine-cytosine pair manages to pass through the polymerase, the distortion disappears, meaning that the chemically flawed guanine will persist in the DNA strand.

In further studies, Beese and her colleagues are exploring other types of DNA lesions and how they affect replication. These lesions include those caused by major carcinogens. The researchers also have developed a method to synchronize the DNA replication process, so that they can make the equivalent of X-ray crystallographic "movies" of the entire process, to better understand it.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>