Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme reins in runaway inflammation; May prove potent drug target

30.08.2004


An enzyme found in nearly all animal and human cells acts as a natural brake to prevent potentially deadly runaway inflammation, UCSF scientists have discovered. The discovery in research with mice suggests a promising target for treating a range of inflammatory diseases in which the body’s immune reaction to bacterial invasion spirals out of control, the researchers report.



The enzyme, known as A20, controls the first step in the series of signals that unleash immune system soldiers against a foreign microbe, the scientists found. The enzyme’s action, they discovered, blocks signals from pivotal receptors on immune cells, known as toll-like receptors (TLRs), that directly sense the presence of dangerous bacteria and other microbes.

The research shows that A20 prevents over-reactions of the immune system to blood infections known as sepsis -- a life-threatening condition in which bacteria invade the bloodstream. Unchecked by A20, the new research shows, an over-reactive immune response can lead to a deadly collapse of blood pressure. Because bacteria are plentiful in our intestines, the protein may also control the immune reaction that can cause inflammatory bowel disease, the research shows.


Discovery of the ubiquitous enzyme’s role in shutting down rampant inflammation is being published online August 29 by Nature Immunology.

The research adds to earlier work by the UCSF scientists and colleagues, published in Science, showing that A20 blocks signals triggered by one of the major agents of inflammation -- the immune system’s tumor necrosis factor (TNF). In the new study, the scientists found that mice lacking genes for both the A20 enzyme and TNF still exhibited a high level of inflammation, indicating that the anti-inflammation protection afforded by A20 is at least in part independent of TNF.

"Finding one enzyme that can rein in two potent pathways of inflammation increases the potential benefits of developing drugs to enhance or restore A20’ s effectiveness," said Averil Ma, MD, Rainin Distinguished Professor of Medicine at UCSF and senior author on the Nature Immunology paper.

In addition to restricting inflammation, A20 may also protect tissues from the damage inflammation can cause, Ma said. His group found that A20 protects cells from "programmed cell death," a process by which cells near the site of inflammation may be killed. Many autoimmune diseases such as type 1 diabetes and arthritis involve cell death and damage to tissues caused by programmed cell death, and A20 may naturally prevent this damage, Ma said.

Finally, mounting evidence has linked subtle and chronic states of inflammation with atherosclerosis, the process by which arteries become clogged and lead to heart attacks and strokes. The A20 enzyme may also be a good target to treat these diseases, Ma said.

"Finding that A20 may control multiple important inflammatory processes provides an extremely attractive model -- a lesson from nature -- showing how one might use a single protein to have multiple therapeutic benefits," Ma said. "A drug that mimicked A20’s sundry functions could be extraordinarily useful."

A20 controls inflammation by blocking the immune system’s first line of defense against bacterial attack. When bacteria invade, their carbohydrates bind to TLRs on the surface of macrophages and other immune cells. This initiates a chain reaction of signals in which proteins inside the macrophages are modified. The end result: the macrophages produce and secrete tumor necrosis factor (TNF), interleukin-1 and other cytokines that induce inflammation.

The researchers showed that A20 shuts down one of these signaling proteins, called TRAF6, turning off the immune system cascade. The enzyme, they found, disables the signaling molecule by cleaving off from it a small protein called ubiquitin which would normally activate the signaling molecule.

Recent studies have suggested that ubiquitin modifications may be very important for regulating a wide variety of inflammatory signals within cells. The new research, along with a study by Ma and colleagues published online July 18 by Nature, shows that A20 modifies ubiquitin-containing proteins in two ways, both to deactivate the proteins and remove them.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>