Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme reins in runaway inflammation; May prove potent drug target

30.08.2004


An enzyme found in nearly all animal and human cells acts as a natural brake to prevent potentially deadly runaway inflammation, UCSF scientists have discovered. The discovery in research with mice suggests a promising target for treating a range of inflammatory diseases in which the body’s immune reaction to bacterial invasion spirals out of control, the researchers report.



The enzyme, known as A20, controls the first step in the series of signals that unleash immune system soldiers against a foreign microbe, the scientists found. The enzyme’s action, they discovered, blocks signals from pivotal receptors on immune cells, known as toll-like receptors (TLRs), that directly sense the presence of dangerous bacteria and other microbes.

The research shows that A20 prevents over-reactions of the immune system to blood infections known as sepsis -- a life-threatening condition in which bacteria invade the bloodstream. Unchecked by A20, the new research shows, an over-reactive immune response can lead to a deadly collapse of blood pressure. Because bacteria are plentiful in our intestines, the protein may also control the immune reaction that can cause inflammatory bowel disease, the research shows.


Discovery of the ubiquitous enzyme’s role in shutting down rampant inflammation is being published online August 29 by Nature Immunology.

The research adds to earlier work by the UCSF scientists and colleagues, published in Science, showing that A20 blocks signals triggered by one of the major agents of inflammation -- the immune system’s tumor necrosis factor (TNF). In the new study, the scientists found that mice lacking genes for both the A20 enzyme and TNF still exhibited a high level of inflammation, indicating that the anti-inflammation protection afforded by A20 is at least in part independent of TNF.

"Finding one enzyme that can rein in two potent pathways of inflammation increases the potential benefits of developing drugs to enhance or restore A20’ s effectiveness," said Averil Ma, MD, Rainin Distinguished Professor of Medicine at UCSF and senior author on the Nature Immunology paper.

In addition to restricting inflammation, A20 may also protect tissues from the damage inflammation can cause, Ma said. His group found that A20 protects cells from "programmed cell death," a process by which cells near the site of inflammation may be killed. Many autoimmune diseases such as type 1 diabetes and arthritis involve cell death and damage to tissues caused by programmed cell death, and A20 may naturally prevent this damage, Ma said.

Finally, mounting evidence has linked subtle and chronic states of inflammation with atherosclerosis, the process by which arteries become clogged and lead to heart attacks and strokes. The A20 enzyme may also be a good target to treat these diseases, Ma said.

"Finding that A20 may control multiple important inflammatory processes provides an extremely attractive model -- a lesson from nature -- showing how one might use a single protein to have multiple therapeutic benefits," Ma said. "A drug that mimicked A20’s sundry functions could be extraordinarily useful."

A20 controls inflammation by blocking the immune system’s first line of defense against bacterial attack. When bacteria invade, their carbohydrates bind to TLRs on the surface of macrophages and other immune cells. This initiates a chain reaction of signals in which proteins inside the macrophages are modified. The end result: the macrophages produce and secrete tumor necrosis factor (TNF), interleukin-1 and other cytokines that induce inflammation.

The researchers showed that A20 shuts down one of these signaling proteins, called TRAF6, turning off the immune system cascade. The enzyme, they found, disables the signaling molecule by cleaving off from it a small protein called ubiquitin which would normally activate the signaling molecule.

Recent studies have suggested that ubiquitin modifications may be very important for regulating a wide variety of inflammatory signals within cells. The new research, along with a study by Ma and colleagues published online July 18 by Nature, shows that A20 modifies ubiquitin-containing proteins in two ways, both to deactivate the proteins and remove them.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

Pinball at the atomic level

30.03.2017 | Physics and Astronomy

Organic-inorganic heterostructures with programmable electronic properties

30.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>