Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Review article makes case for a new source of cells in the body

27.08.2004


As the debate continues on the ethics and therapeutic potential of embryonic versus mature stem cells, Medical College of Georgia researchers are exploring a third group of cells that appears critical to development and capable of making all major types of human tissue.



"VENT cells are a unique category of multi-potent cells," Dr. Douglas P. Dickinson, molecular biologist, says of this cell type that escapes from the bottom of the neural tube early in development, after the tube closes to form the brain.

VENT cells then travel along nerve paths, eventually getting ahead of the nerves, and dispersing throughout the body. "They travel in association with the cranial nerves to target tissues, disperse into those tissues, then, at what is perhaps an endpoint for their stay during development, they differentiate into the same cell type as their neighbors. So they potentially just vanish into the crowd," says Dr. Dickinson who first heard of these cells last year when their discoverer, MCG Developmental Biologist Paul Sohal, gave a lecture at the MCG School of Dentistry. Dr. Dickinson thought these cells might be used to establish a human cell line to enable his studies of the development and function of salivary glands.


While the jury remains out on that question, the cells have helped Dr. Dickinson find new direction in his research: working to learn more about the cells Dr. Sohal first saw in 1995 traveling out of the neural tube of a three-day-old chick embryo.

Dr. Dickinson got a baptism by immersion as lead author on an invited review article published this month in the Journal of Anatomy that examines the near 10-year history of VENT cell research.

The August review article chronicles the cells’ discovery and documentation of their presence in every tissue that Dr. Sohal’s research team has examined, including the gastrointestinal tract, heart, liver, blood vessels, inner ear and skull. "There aren’t a huge number of them in most tissues," says Dr. Dickinson. "But what is exciting about VENT cells is that if you interfere with VENT cells arriving at those target tissues, you appear to cause major disruptions in development."

Now Dr. Dickinson is part of the team answering additional questions such as the origin of VENT cells, the exact role they play in target tissues and if they are the source of undifferentiated adult stem cells kept in reserve by all tissues

In fact, Dr. Dickinson already has applied for a National Institutes of Health grant to further explore the role of VENT cells in craniofacial development and the genes that distinguish VENT cells from others. To help explore their multi-potential status, he wants to answer questions such as: "Can you take VENT cells from elsewhere in the embryo, move them to the craniofacial area and supplement function?"

The contributions of VENT cells challenges long-held notions about what type of cells form what type of tissue. For example, with the gastrointestinal tract, future scientists and physicians learn that the enteric nervous system, which innervates the tract, comes from neural crest cells. Smooth muscle cells come from one of the body’s three basic germ layers laid down early in development called the mesoderm. The lining of the gut, the epithelium, comes from the endoderm, another germ layer. Now the science is showing that VENT cells contribute to all these tissues as well.

Challengers say VENT cells are not distinctive, rather artifacts or aberrations. But Dr. Dickinson says the review paper addresses detractors by showing how VENT cells help make the body’s four tissue types – nerve, muscle, connective and epithelial tissues. It also clearly points out how the cells are identified using four distinct labeling mechanisms and points to potential technical problems in two reports where scientists looked in vain for VENT cells.

"This tells us that VENT cells are remarkable cells. They are important. If you take them away you have heart defects, craniofacial defects, gut defects and so on," Dr. Dickinson says. "So you need them, " he says of VENT cells, the first source of new cells identified in the embryo since 1868.

Many questions remain about what the cells do, but the MCG scientists consider their existence no longer up for debate. "They clearly migrate through the cranial nerves. They reach target tissue. What they do there, that is the exciting part. We don’t know yet," Dr. Dickinson says. "We know where they end up and that they are doing something very important along the way," noting that the effect of their removal seems disproportionate with their relatively small numbers.

"It’s not that these cells are providing a cell type that is not available from any other source," Dr. Sohal says. "So why have a population of cells which does not follow established principles of development? Why have a cell population that is multi-potential, that is capable of forming every kind of tissue in our body?"

The researchers say it’s because VENT cells have a role in every tissue, the first of which may be connecting the central nervous system with its target tissues, noting how the cells travel with nerves then move ahead of them as if showing the way. "Nerves could be following certain cues left behind by VENT cells," Dr. Sohal says. "That is what we think. We have to experimentally test that."

They also think that VENT cells may work like the Federal Reserve System works for banks: as a centralized source that supplies stem cells to all tissues. "We have a pool of stem cells in every tissue but we don’t know the source of these cells in adults," Dr. Sohal says. "VENT cells would be a simple way of providing stem cells to various tissues because nerves connect to every tissue and you would not be dependent on every muscle, every nerve, every bone to make sure you keep a small reserve," Dr. Sohal says. The work to date has been in chicken, quail and duck embryos and one of many projects is to move into the mouse model to enable detailed genetic studies.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>