Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein fishing in America: The movie

27.08.2004


Experiment proves that ’fly-fishing mechanism’ theory of protein-to-protein communication holds water



Proteins pass messages to other proteins much like fly-fishermen flicker their lines against water, or so a current leading theory holds. The repeated weak slapping of protein surfaces against one-another is the critical first step in a chain of events that rule all subsequent cellular behavior.

But this vital exchange between single molecules has defied direct observation because that line-flicking and message-passing happen randomly at such a small scale.


A Pacific Northwest National Laboratory team led by H. Peter Lu, using a technique called single-molecule photon stamping spectroscopy, has now observed real-time interactions of single proteins. Their experimental evidence, reported Thursday at the 228th national meeting of the American Chemical Society, supports the fly-fishing theory of protein communication.

"In the past five years, the field of protein-protein interaction dynamics has exploded," said Lu, a staff scientist at the Department of Energy laboratory in Richland, Wash. "Measurements to date have been snapshots of proteins. But to do dynamic measurements, to capture proteins in motion, this is unique."

Techniques such as nuclear magnetic resonance and x-ray crystallography reveal structural details about proteins and positions of their atoms at a particular time in space. They provide structural reference points, but to contrive interactions, many images have to be gathered at different times, events averaged out and a narrative flow imposed. The effect is akin to cutting a cartoon into a thousand frames tossing the pieces from the ceiling like confetti, then gathering them off the floor and reassembling them. Try making sense of that.

"It’s not an observation in real time," Lu said. "You’re measuring many proteins at a time, and you get information about two states and two states only: binding or not binding. How the binding and not binding are linked is hidden information." Lu’s single-molecule spectroscopy technique gathers and analyzes photons emitted as single proteins interact. This raw data may not produce what we would think of as a motion picture, but for Lu it is just as good. It enables him to construct--in true sequence and in real time--the position and continuous motion of the single molecules for the millisecond they flip-flop against each other.

So far, Lu’s team has looked at two different sets of proteins selected their importance in intracellular signaling--one called Cdc42 that activates with a protein known as WASP and calmodulin, a regulatory protein important in cells that depend on calcium for cell signaling, that can bind with various protein species.

Lu’s group has assembled an elaborate instrument at PNNL’s W.R. Wiley Environmental Molecular Sciences Laboratory. In the instrument, fluorescent-dye-tagged proteins are embedded in a gel and probed by a continuous-beam, or ultrafast, laser. The protein fluorescence fluctuates when molecules interact with one-another. The light emissions and fluctuations from the laser-excited molecules are captured and measured by an inverted fluorescence microscope across a field of about 250 nanometers; individual photons are directed toward a device called a photon-stamping detector that yields key information on each detected photon. "The detection is highly sensitive and precise," Lu said. "One molecule doesn’t have many photons give out. We need to capture as many photo-physical properties as we possibly can."

On this project, Lu’s group collaborated with molecular biologists Klaus Hahn from the Scripps Research Institute and Thomas Squier from Pacific Northwest National Laboratory.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>