Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein fishing in America: The movie

27.08.2004


Experiment proves that ’fly-fishing mechanism’ theory of protein-to-protein communication holds water



Proteins pass messages to other proteins much like fly-fishermen flicker their lines against water, or so a current leading theory holds. The repeated weak slapping of protein surfaces against one-another is the critical first step in a chain of events that rule all subsequent cellular behavior.

But this vital exchange between single molecules has defied direct observation because that line-flicking and message-passing happen randomly at such a small scale.


A Pacific Northwest National Laboratory team led by H. Peter Lu, using a technique called single-molecule photon stamping spectroscopy, has now observed real-time interactions of single proteins. Their experimental evidence, reported Thursday at the 228th national meeting of the American Chemical Society, supports the fly-fishing theory of protein communication.

"In the past five years, the field of protein-protein interaction dynamics has exploded," said Lu, a staff scientist at the Department of Energy laboratory in Richland, Wash. "Measurements to date have been snapshots of proteins. But to do dynamic measurements, to capture proteins in motion, this is unique."

Techniques such as nuclear magnetic resonance and x-ray crystallography reveal structural details about proteins and positions of their atoms at a particular time in space. They provide structural reference points, but to contrive interactions, many images have to be gathered at different times, events averaged out and a narrative flow imposed. The effect is akin to cutting a cartoon into a thousand frames tossing the pieces from the ceiling like confetti, then gathering them off the floor and reassembling them. Try making sense of that.

"It’s not an observation in real time," Lu said. "You’re measuring many proteins at a time, and you get information about two states and two states only: binding or not binding. How the binding and not binding are linked is hidden information." Lu’s single-molecule spectroscopy technique gathers and analyzes photons emitted as single proteins interact. This raw data may not produce what we would think of as a motion picture, but for Lu it is just as good. It enables him to construct--in true sequence and in real time--the position and continuous motion of the single molecules for the millisecond they flip-flop against each other.

So far, Lu’s team has looked at two different sets of proteins selected their importance in intracellular signaling--one called Cdc42 that activates with a protein known as WASP and calmodulin, a regulatory protein important in cells that depend on calcium for cell signaling, that can bind with various protein species.

Lu’s group has assembled an elaborate instrument at PNNL’s W.R. Wiley Environmental Molecular Sciences Laboratory. In the instrument, fluorescent-dye-tagged proteins are embedded in a gel and probed by a continuous-beam, or ultrafast, laser. The protein fluorescence fluctuates when molecules interact with one-another. The light emissions and fluctuations from the laser-excited molecules are captured and measured by an inverted fluorescence microscope across a field of about 250 nanometers; individual photons are directed toward a device called a photon-stamping detector that yields key information on each detected photon. "The detection is highly sensitive and precise," Lu said. "One molecule doesn’t have many photons give out. We need to capture as many photo-physical properties as we possibly can."

On this project, Lu’s group collaborated with molecular biologists Klaus Hahn from the Scripps Research Institute and Thomas Squier from Pacific Northwest National Laboratory.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>