Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein fishing in America: The movie


Experiment proves that ’fly-fishing mechanism’ theory of protein-to-protein communication holds water

Proteins pass messages to other proteins much like fly-fishermen flicker their lines against water, or so a current leading theory holds. The repeated weak slapping of protein surfaces against one-another is the critical first step in a chain of events that rule all subsequent cellular behavior.

But this vital exchange between single molecules has defied direct observation because that line-flicking and message-passing happen randomly at such a small scale.

A Pacific Northwest National Laboratory team led by H. Peter Lu, using a technique called single-molecule photon stamping spectroscopy, has now observed real-time interactions of single proteins. Their experimental evidence, reported Thursday at the 228th national meeting of the American Chemical Society, supports the fly-fishing theory of protein communication.

"In the past five years, the field of protein-protein interaction dynamics has exploded," said Lu, a staff scientist at the Department of Energy laboratory in Richland, Wash. "Measurements to date have been snapshots of proteins. But to do dynamic measurements, to capture proteins in motion, this is unique."

Techniques such as nuclear magnetic resonance and x-ray crystallography reveal structural details about proteins and positions of their atoms at a particular time in space. They provide structural reference points, but to contrive interactions, many images have to be gathered at different times, events averaged out and a narrative flow imposed. The effect is akin to cutting a cartoon into a thousand frames tossing the pieces from the ceiling like confetti, then gathering them off the floor and reassembling them. Try making sense of that.

"It’s not an observation in real time," Lu said. "You’re measuring many proteins at a time, and you get information about two states and two states only: binding or not binding. How the binding and not binding are linked is hidden information." Lu’s single-molecule spectroscopy technique gathers and analyzes photons emitted as single proteins interact. This raw data may not produce what we would think of as a motion picture, but for Lu it is just as good. It enables him to construct--in true sequence and in real time--the position and continuous motion of the single molecules for the millisecond they flip-flop against each other.

So far, Lu’s team has looked at two different sets of proteins selected their importance in intracellular signaling--one called Cdc42 that activates with a protein known as WASP and calmodulin, a regulatory protein important in cells that depend on calcium for cell signaling, that can bind with various protein species.

Lu’s group has assembled an elaborate instrument at PNNL’s W.R. Wiley Environmental Molecular Sciences Laboratory. In the instrument, fluorescent-dye-tagged proteins are embedded in a gel and probed by a continuous-beam, or ultrafast, laser. The protein fluorescence fluctuates when molecules interact with one-another. The light emissions and fluctuations from the laser-excited molecules are captured and measured by an inverted fluorescence microscope across a field of about 250 nanometers; individual photons are directed toward a device called a photon-stamping detector that yields key information on each detected photon. "The detection is highly sensitive and precise," Lu said. "One molecule doesn’t have many photons give out. We need to capture as many photo-physical properties as we possibly can."

On this project, Lu’s group collaborated with molecular biologists Klaus Hahn from the Scripps Research Institute and Thomas Squier from Pacific Northwest National Laboratory.

Bill Cannon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>