Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface physics technique reveals complex chemical reactions on icy surfaces

26.08.2004


Dynamic ice

A technique borrowed from the surface physics community is helping chemists and atmospheric scientists understand the complex chemical reactions that occur on low-temperature ice.

Known as electron-stimulated desorption (ESD), the technique uses low-energy electrons to locally probe surfaces, differentiating their characteristics from those of the bulk material below them. Using ESD, researchers at the Georgia Institute of Technology have demonstrated that hydrochloric acid (HCl) quickly dissociates upon contact with icy surfaces – even at temperatures well below 100 degrees Kelvin, conditions seen naturally only in the outer solar system.



The work could lead to a better understanding of the complex atmospheric chemistry occurring in stratospheric ice crystals, the polar ice caps, aerosols containing ocean salt – and even the interface between water and DNA.

"These surface science techniques that have been established in the physics community for looking at the molecular structure of adsorbates on surfaces can also be applied to environmentally relevant problems," said Janine Herring-Captain, a doctoral student in Georgia Tech’s School of Chemistry and Biochemistry. "We can use them to get very basic information regarding some key environmental issues."

Using an ultra-high vacuum chamber, Herring-Captain used ESD to study HCl interactions with a variety of ice surfaces across a range of temperatures and pressures. The results of her work will be presented August 25th at the 228th National Meeting of the American Chemical Society in Philadelphia, PA. Information about the work, believed to be the first electron-energy, phase and temperature-dependent ESD study of cluster ion formation and HCl dissociation on ice surfaces, was published May 13 in Physical Review Letters.

Sponsored by the U.S. Department of Energy’s Office of Science, the work is part of a long-term study of electron collisions with complex targets and reactions on ice of various kinds – a material much more complex than it appears.

"As chemical physicists, we have to look at low temperature ice as a very dynamic surface. Ice is a stage for chemicals to meet each other and then react," said Thomas Orlando, co-author of the Physical Review Letters paper and chair of Georgia Tech’s School of Chemistry and Biochemistry. "This ice stage is intimately involved in the reactions, and without it, many reactions probably wouldn’t occur."

Even though extremely cold ice may seem like an improbable surface for many chemical reactions, water molecules in the outer one or two layers of ice remain in motion, even at temperatures found only in the outer solar system. On Earth, warmer ice surfaces are even more active.

"There are molecules moving onto and off of the surface, especially at the poles, where the temperatures are really warm compared to what we study in the laboratory," noted Herring-Captain. "Things are evaporating and re-condensing on the surface, which is where these atmospheric particles interact. Electron-stimulated desorption is an ideal way to study that surface activity."

Activity in these outer layers of ice can be dramatically different from what’s happening in the bulk.

"Most of the chemistry that is promoting the development of the ozone hole is happening at the surface because it is gas-phase molecules interacting with these dissolved species that may produce another gas," she noted. "Using ESD, we can de-couple the surface effects from what is going on in the bulk, which is what most people are seeing."

The research team, which also included Alex Aleksandrov, chose to study HCl interaction with ice because the protonation process is among the simplest reactions to take place. In their laboratory, they deposited very low concentrations of HCl onto icy surfaces at a variety of temperatures and pressures, and then focused 0.5 square millimeter electron beams on the surface to measure what was happening. Because the probe uses low-energy electrons, it did not significantly contribute to the reactions.

"Hydrochloric acid is supposed to be one of the reservoir species, but our research suggests it is never really there for long because the dissociation reaction takes place immediately," said Orlando. "The solvation happens almost instantly. We don’t think HCl is really ever a chemical entity available on the surface for reaction."

The dissociation effects occur at very low concentrations typical of those seen in atmospheric conditions. However, higher concentrations may change the dynamics, Orlando noted.

The extremely low temperatures and pressures achieved in their laboratory allowed the researchers to isolate the reactions they wanted to study from gas-phase effects that might occur at higher temperatures.

Because the studies were done at extremely low temperatures, the results have been controversial, Orlando admits.

"From a kinetics point of view, if these reactions are happening at low temperatures and low pressures, they must also be happening at higher temperatures and higher pressures," he said. "Few reactions slow down when the temperature rises and the higher temperatures and pressures are related to actual stratospheric conditions."

In related work, the research team is also studying formation of ion clusters from salt water and the interaction of electrons with DNA. Using a liquid jet injecting salt water into a vacuum, they found that the salt caused the water molecules to re-orient themselves at the interface, boosting the formation of ice clusters.

"When you think about salt and water, you expect to see a simple well-behaved solution," Orlando explained. "But at even low temperatures, salt and the associated solvation dynamics and structures are very complicated."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>