Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical catalysts may neutralize groundwater contaminants

25.08.2004


Compounds ’break bonds’ holding dangerous pollutants together


Everything from the manufacture of new materials to the creation of modern medications relies on chemicals known as metal-based catalysts. Catalysts pack a double punch: Even as they greatly increase the rate of chemical processes, they regenerate so they can be used again. Catalysts also can be designed to break or make powerful chemical bonds at one end of a molecule while leaving the other end to sit quietly inactive. For this reason, many chemists -- particularly, inorganic chemists who often study metals and their reactivity -- are on a continuing quest for new catalysts.

At The Johns Hopkins University, researchers have developed a new set of molecules that has the potential to catalyze a wide variety of chemical reactions, including -– but not limited to -– the cleanup of common but quite dangerous groundwater pollutants called organohalides. Scientists will announce their results in late August at the American Chemical Society’s annual summer meeting, held this year in Philadelphia.

"Organohalides comprise a high percentage of the priority pollutants as registered by the EPA, so this is a pretty important advance," said David P. Goldberg, associate professor in the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. "In addition, our molecules have the potential to catalyze a number of other reactions important in the synthesis of specialty chemicals for industry."



In the biological world, enzymes are the catalysts which function inside cells, and many enzymes depend on metal held inside specially built organic molecules called porphyrins. Using these as a model, Goldberg’s team synthesized a variation that changed the properties of the reactive metal in the center.

Called a "corrolazine," the new ring contains one less atom than other, better-studied porphyrins. These molecules are fascinating from a fundamental perspective, Goldberg said. The tiny change made in their structure imparts some very different properties than the same system found in nature, and may allow scientists to catalyze reactions in very different ways from their natural counterparts.

"By studying these natural mimics, we can learn a great deal about why nature – actually, evolution – made certain choices in the design and development of enzymes," Goldberg said.

Though some of the molecules being investigated by Goldberg’s team are important synthetic precursors that can ultimately be used in making specialty chemicals and pharmaceuticals, other recent work in the group, spearheaded by graduate students Joseph Fox and David Capretto, has focused on how to use the new catalysts to render the groundwater pollutants called organohalides harmless by way of a simple chemical reaction.

"Organohalides can be transformed into safer compounds by breaking the bonds between the halogen and carbon atoms they contain," Goldberg said.

Goldberg’s work, funded largely by the National Science Foundation, has been recognized by the Dreyfus Foundation, which awarded him one of nine Dreyfus Postdoctoral Fellowships in Environmental Chemistry given out this year nationwide. These prestigious awards are intended to fund the salary and expenses of an outstanding post-doctoral fellow for two years in the lab of the sponsor.

"Though this work represents a step forward, there is still an enormous amount of work to be done, including finding what metals work best under what conditions," Goldberg said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>