Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical catalysts may neutralize groundwater contaminants

25.08.2004


Compounds ’break bonds’ holding dangerous pollutants together


Everything from the manufacture of new materials to the creation of modern medications relies on chemicals known as metal-based catalysts. Catalysts pack a double punch: Even as they greatly increase the rate of chemical processes, they regenerate so they can be used again. Catalysts also can be designed to break or make powerful chemical bonds at one end of a molecule while leaving the other end to sit quietly inactive. For this reason, many chemists -- particularly, inorganic chemists who often study metals and their reactivity -- are on a continuing quest for new catalysts.

At The Johns Hopkins University, researchers have developed a new set of molecules that has the potential to catalyze a wide variety of chemical reactions, including -– but not limited to -– the cleanup of common but quite dangerous groundwater pollutants called organohalides. Scientists will announce their results in late August at the American Chemical Society’s annual summer meeting, held this year in Philadelphia.

"Organohalides comprise a high percentage of the priority pollutants as registered by the EPA, so this is a pretty important advance," said David P. Goldberg, associate professor in the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. "In addition, our molecules have the potential to catalyze a number of other reactions important in the synthesis of specialty chemicals for industry."



In the biological world, enzymes are the catalysts which function inside cells, and many enzymes depend on metal held inside specially built organic molecules called porphyrins. Using these as a model, Goldberg’s team synthesized a variation that changed the properties of the reactive metal in the center.

Called a "corrolazine," the new ring contains one less atom than other, better-studied porphyrins. These molecules are fascinating from a fundamental perspective, Goldberg said. The tiny change made in their structure imparts some very different properties than the same system found in nature, and may allow scientists to catalyze reactions in very different ways from their natural counterparts.

"By studying these natural mimics, we can learn a great deal about why nature – actually, evolution – made certain choices in the design and development of enzymes," Goldberg said.

Though some of the molecules being investigated by Goldberg’s team are important synthetic precursors that can ultimately be used in making specialty chemicals and pharmaceuticals, other recent work in the group, spearheaded by graduate students Joseph Fox and David Capretto, has focused on how to use the new catalysts to render the groundwater pollutants called organohalides harmless by way of a simple chemical reaction.

"Organohalides can be transformed into safer compounds by breaking the bonds between the halogen and carbon atoms they contain," Goldberg said.

Goldberg’s work, funded largely by the National Science Foundation, has been recognized by the Dreyfus Foundation, which awarded him one of nine Dreyfus Postdoctoral Fellowships in Environmental Chemistry given out this year nationwide. These prestigious awards are intended to fund the salary and expenses of an outstanding post-doctoral fellow for two years in the lab of the sponsor.

"Though this work represents a step forward, there is still an enormous amount of work to be done, including finding what metals work best under what conditions," Goldberg said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>