Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical catalysts may neutralize groundwater contaminants

25.08.2004


Compounds ’break bonds’ holding dangerous pollutants together


Everything from the manufacture of new materials to the creation of modern medications relies on chemicals known as metal-based catalysts. Catalysts pack a double punch: Even as they greatly increase the rate of chemical processes, they regenerate so they can be used again. Catalysts also can be designed to break or make powerful chemical bonds at one end of a molecule while leaving the other end to sit quietly inactive. For this reason, many chemists -- particularly, inorganic chemists who often study metals and their reactivity -- are on a continuing quest for new catalysts.

At The Johns Hopkins University, researchers have developed a new set of molecules that has the potential to catalyze a wide variety of chemical reactions, including -– but not limited to -– the cleanup of common but quite dangerous groundwater pollutants called organohalides. Scientists will announce their results in late August at the American Chemical Society’s annual summer meeting, held this year in Philadelphia.

"Organohalides comprise a high percentage of the priority pollutants as registered by the EPA, so this is a pretty important advance," said David P. Goldberg, associate professor in the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. "In addition, our molecules have the potential to catalyze a number of other reactions important in the synthesis of specialty chemicals for industry."



In the biological world, enzymes are the catalysts which function inside cells, and many enzymes depend on metal held inside specially built organic molecules called porphyrins. Using these as a model, Goldberg’s team synthesized a variation that changed the properties of the reactive metal in the center.

Called a "corrolazine," the new ring contains one less atom than other, better-studied porphyrins. These molecules are fascinating from a fundamental perspective, Goldberg said. The tiny change made in their structure imparts some very different properties than the same system found in nature, and may allow scientists to catalyze reactions in very different ways from their natural counterparts.

"By studying these natural mimics, we can learn a great deal about why nature – actually, evolution – made certain choices in the design and development of enzymes," Goldberg said.

Though some of the molecules being investigated by Goldberg’s team are important synthetic precursors that can ultimately be used in making specialty chemicals and pharmaceuticals, other recent work in the group, spearheaded by graduate students Joseph Fox and David Capretto, has focused on how to use the new catalysts to render the groundwater pollutants called organohalides harmless by way of a simple chemical reaction.

"Organohalides can be transformed into safer compounds by breaking the bonds between the halogen and carbon atoms they contain," Goldberg said.

Goldberg’s work, funded largely by the National Science Foundation, has been recognized by the Dreyfus Foundation, which awarded him one of nine Dreyfus Postdoctoral Fellowships in Environmental Chemistry given out this year nationwide. These prestigious awards are intended to fund the salary and expenses of an outstanding post-doctoral fellow for two years in the lab of the sponsor.

"Though this work represents a step forward, there is still an enormous amount of work to be done, including finding what metals work best under what conditions," Goldberg said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>