Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical catalysts may neutralize groundwater contaminants

25.08.2004


Compounds ’break bonds’ holding dangerous pollutants together


Everything from the manufacture of new materials to the creation of modern medications relies on chemicals known as metal-based catalysts. Catalysts pack a double punch: Even as they greatly increase the rate of chemical processes, they regenerate so they can be used again. Catalysts also can be designed to break or make powerful chemical bonds at one end of a molecule while leaving the other end to sit quietly inactive. For this reason, many chemists -- particularly, inorganic chemists who often study metals and their reactivity -- are on a continuing quest for new catalysts.

At The Johns Hopkins University, researchers have developed a new set of molecules that has the potential to catalyze a wide variety of chemical reactions, including -– but not limited to -– the cleanup of common but quite dangerous groundwater pollutants called organohalides. Scientists will announce their results in late August at the American Chemical Society’s annual summer meeting, held this year in Philadelphia.

"Organohalides comprise a high percentage of the priority pollutants as registered by the EPA, so this is a pretty important advance," said David P. Goldberg, associate professor in the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. "In addition, our molecules have the potential to catalyze a number of other reactions important in the synthesis of specialty chemicals for industry."



In the biological world, enzymes are the catalysts which function inside cells, and many enzymes depend on metal held inside specially built organic molecules called porphyrins. Using these as a model, Goldberg’s team synthesized a variation that changed the properties of the reactive metal in the center.

Called a "corrolazine," the new ring contains one less atom than other, better-studied porphyrins. These molecules are fascinating from a fundamental perspective, Goldberg said. The tiny change made in their structure imparts some very different properties than the same system found in nature, and may allow scientists to catalyze reactions in very different ways from their natural counterparts.

"By studying these natural mimics, we can learn a great deal about why nature – actually, evolution – made certain choices in the design and development of enzymes," Goldberg said.

Though some of the molecules being investigated by Goldberg’s team are important synthetic precursors that can ultimately be used in making specialty chemicals and pharmaceuticals, other recent work in the group, spearheaded by graduate students Joseph Fox and David Capretto, has focused on how to use the new catalysts to render the groundwater pollutants called organohalides harmless by way of a simple chemical reaction.

"Organohalides can be transformed into safer compounds by breaking the bonds between the halogen and carbon atoms they contain," Goldberg said.

Goldberg’s work, funded largely by the National Science Foundation, has been recognized by the Dreyfus Foundation, which awarded him one of nine Dreyfus Postdoctoral Fellowships in Environmental Chemistry given out this year nationwide. These prestigious awards are intended to fund the salary and expenses of an outstanding post-doctoral fellow for two years in the lab of the sponsor.

"Though this work represents a step forward, there is still an enormous amount of work to be done, including finding what metals work best under what conditions," Goldberg said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>