Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No Longer Just for Biology, RNA Can Now be Built Into 3-D Arrays


Researchers have coaxed RNA to self-assemble into 3-D arrays, a potential backbone for nanotech scaffolds. These RNA structures can form a wider variety of shapes than double-stranded DNA can and are easier to manipulate than many protein alternatives.

Peixuan Guo of Purdue University and his colleagues report the findings in the August 11, 2004, issue of the journal Nano Letters.

RNA (ribonucleic acid) molecules are best known for implementing the genetic information encoded in DNA (deoxyribonucleic acid). However, instead of using the long molecular strings to carry information, the researchers have achieved new control over RNA and created novel arrays.

By mixing the custom-made RNA strands with other substances, such as magnesium chloride, the researchers were able to get the strands to join into 3-D shapes.

In 1987, Guo discovered that a bacteria-infecting virus possesses a biomolecular nanomotor that requires RNA molecules to function. While determining how RNA works in that motor, he learned to manipulate and control RNA assembly.

Now, Guo and his colleagues have applied that knowledge to building artificial RNA nanostructures, including “large” 3-D arrays formed from identical RNA building blocks. Because these arrays extend to several micrometers, far larger than individual RNA strands, they may potentially link nanofabrication with current microfabrication processes.

The researchers hope that the arrays, while still in the earliest stages of development, will one day serve as the scaffolding on which diagnostic chips, tiny sensors, gene delivery vehicles and other nanoscale devices will be mounted or constructed.

From the researchers:

“Living systems contain a wide variety of nanomachines and ordered structures, including motors, pumps and valves. Our research is devoted to making these machines function outside their native environment.” – Peixuan Guo, Purdue University

“We have discovered a particular type of RNA molecule known as pRNA, or packaging RNA, that forms six-unit rings that can drive a tiny but powerful molecular motor.” – Peixuan Guo

“Our future research will focus on incorporating these nanomachines into nanodevices for such applications as drug or gene delivery, gears for nano-equipment, and intricate arrays and chips for diagnostic devices, sensors and electronics.” – Peixuan Guo

“This report demonstrates that RNA can be used to form a variety of artificial shapes and that we can assemble these shapes into arrays tens of microns in size. Using RNA’s tendency to self-assemble, we have built the arrays from many thousands of connected RNA building blocks. The arrays are stable and resistant to a wide range of environmental conditions, such as temperature, salt concentration, and pH.” – Peixuan Guo

From experts at NSF:

“The discovery of this viral RNA machine is quite remarkable and provides yet another example of the flexibility and versatility of RNA. Dr. Guo is exploiting the properties of RNA in a new and potentially important way.” – Patrick Dennis, Program Director for Microbial Genetics at the National Science Foundation and the officer who oversees Dr. Guo’s award.

| newswise
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>