Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up dead cell corpses: The phosphatidylserine receptor is not needed

24.08.2004

An article published today in Journal of Biology shows that the phosphatidylserine receptor, previously thought to be critical for the recognition and engulfment of dying cells, is not in fact necessary for these processes at all. Instead, the researchers found that the receptor is involved in the differentiation of a wide range of tissues during embryogenesis.

When cells undergo programmed cell death, they spill their normally hidden contents and their neighbours can thus recognise them as sick or dead and dispose of them accordingly. A particular recognition signal is provided by the normally internal phospholipid, phosphatidylserine, which dying cells expose on their surface.

Yet, Dr Andreas Lengeling and his colleagues from the German Research Center for Biotechnology found that the same patterns of cell death occurred during development in both wild-type (control) mice and mice lacking the phosphatidylserine receptor (Ptdsr). In addition, macrophages without Ptdsr, when studied in vitro, were just as efficient at ingesting dying cells as wild-type macrophages.

This evidence contradicts previous studies*, which concluded that mice with no Ptdsr are deficient at clearing up apoptosing cells, and consequently that the receptor is essential to this process. It is not yet clear precisely how the earlier studies led to such different conclusions about the role for the receptor, but one factor may be differences in the genetic background of the knockout mice that were studied by the various groups. In addition, Dr. Lengeling and his colleagues made more detailed studies in a wider range of tissue types than other researchers had previously carried out.

Dr Lengeling’s findings open up the possibility that another, as yet unknown, receptor exists that recognises phosphatidylserine on dying cells and promotes their ingestion. Alternatively, the engulfment of apoptosing cells may be mediated via phosphatidylserine-binding proteins and their receptors.

As dead and dying cells spill their otherwise internal contents, their rapid engulfment by neighbouring cells or professional phagocytes is needed to prevent the induction of autoimmune or inflammatory disorders. An accurate understanding of the molecular mechanisms behind the clearance of cell "corpses", and consequently what might go wrong with this process, could lead to the development of treatments for these disorders - and is important if money and time are not to be wasted creating ineffective remedies.

The experiments performed by Dr Lengeling and his team showed that rather than recognising apoptotic cells, Ptdsr may well be involved in stimulating macrophages to release pro-inflammatory cytokines. Most importantly, however, Ptdsr appears to promote the differentiation of lung, kidney, intestine and other organs. Mice with no Ptdsr died either prior to or shortly after birth, were growth retarded, and experienced delayed organ development. Some knockout mice had severely disturbed eye development.

Gemma Bradley | BioMed Central
Further information:
http://www.biomedcentral.com
http://jbiol.com
http://jbiol.com/content/3/4/15

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>