Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up dead cell corpses: The phosphatidylserine receptor is not needed

24.08.2004

An article published today in Journal of Biology shows that the phosphatidylserine receptor, previously thought to be critical for the recognition and engulfment of dying cells, is not in fact necessary for these processes at all. Instead, the researchers found that the receptor is involved in the differentiation of a wide range of tissues during embryogenesis.

When cells undergo programmed cell death, they spill their normally hidden contents and their neighbours can thus recognise them as sick or dead and dispose of them accordingly. A particular recognition signal is provided by the normally internal phospholipid, phosphatidylserine, which dying cells expose on their surface.

Yet, Dr Andreas Lengeling and his colleagues from the German Research Center for Biotechnology found that the same patterns of cell death occurred during development in both wild-type (control) mice and mice lacking the phosphatidylserine receptor (Ptdsr). In addition, macrophages without Ptdsr, when studied in vitro, were just as efficient at ingesting dying cells as wild-type macrophages.

This evidence contradicts previous studies*, which concluded that mice with no Ptdsr are deficient at clearing up apoptosing cells, and consequently that the receptor is essential to this process. It is not yet clear precisely how the earlier studies led to such different conclusions about the role for the receptor, but one factor may be differences in the genetic background of the knockout mice that were studied by the various groups. In addition, Dr. Lengeling and his colleagues made more detailed studies in a wider range of tissue types than other researchers had previously carried out.

Dr Lengeling’s findings open up the possibility that another, as yet unknown, receptor exists that recognises phosphatidylserine on dying cells and promotes their ingestion. Alternatively, the engulfment of apoptosing cells may be mediated via phosphatidylserine-binding proteins and their receptors.

As dead and dying cells spill their otherwise internal contents, their rapid engulfment by neighbouring cells or professional phagocytes is needed to prevent the induction of autoimmune or inflammatory disorders. An accurate understanding of the molecular mechanisms behind the clearance of cell "corpses", and consequently what might go wrong with this process, could lead to the development of treatments for these disorders - and is important if money and time are not to be wasted creating ineffective remedies.

The experiments performed by Dr Lengeling and his team showed that rather than recognising apoptotic cells, Ptdsr may well be involved in stimulating macrophages to release pro-inflammatory cytokines. Most importantly, however, Ptdsr appears to promote the differentiation of lung, kidney, intestine and other organs. Mice with no Ptdsr died either prior to or shortly after birth, were growth retarded, and experienced delayed organ development. Some knockout mice had severely disturbed eye development.

Gemma Bradley | BioMed Central
Further information:
http://www.biomedcentral.com
http://jbiol.com
http://jbiol.com/content/3/4/15

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>