Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find clues about how antibodies specialize

24.08.2004


Gene mutations are closely targeted -- enhancing the immune response while avoiding cancer

Researchers at Children’s Hospital Boston have begun unraveling the mystery of how B lymphocytes -- key infection-fighting cells in the body -- are able to create many different kinds of specialized antibodies through selective gene mutations, while being protected from random mutations that could give rise to cancers.

The findings, reported in the Aug. 26 issue of the journal Nature, will help scientists better understand two things: how the body is able to mount a strong immune defense against foreign attackers, and how cancers, particularly lymphomas, develop and might be prevented.



B lymphocytes, or B cells, are the immune-system cells responsible for producing antibodies – proteins that recognize, bind to, and neutralize viruses and other harmful pathogens. Since there is a huge diversity of pathogens in the environment – more than our genomes could possibly anticipate and encode for -- the antibody response has to be very fluid and adaptable. The human immune system handles antibody diversification through selective mutations to specific stretches of DNA in B cells that encode immunoglobulins, the proteins from which antibodies are made. Mutations in these gene segments – to the so-called variable regions -- give our B cells the ability to make unique, specialized antibodies with high affinity for a specific invader.

This mutation process, known as somatic hypermutation, is known to require an enzyme called activation-induced cytidine deaminase (AID). But how AID targets the variable region of the immunoglobulin genes -- while leaving the rest of the genetic material in the B cell untouched -- has been a mystery.

In the biochemical study reported in Nature, the Children’s Hospital Boston researchers discovered that another protein, known as replication protein A (RPA), interacts with AID, attaches to it, and directs AID to the specific segment of the B cell’s DNA required for a tailored immune response. The study details the process by which AID is biochemically modified to promote its interaction with RPA.

"Such a targeting mechanism for AID is essential for our immune system," says Dr. Frederick W. Alt, a Howard Hughes Medical Institute researcher at the Children’s Department of Molecular Medicine and senior investigator on the study. "Without it, we’d be immunodeficient, unable to diversify our antibody repertoire."

The Children’s study also has implications for the prevention of lymphomas, notes Dr. Jayanta Chaudhuri, first author on the study and a postdoctoral fellow in Alt’s laboratory.

"The AID-RPA interaction must be regulated to bring about the specificity of the mutation," Chaudhuri says. "If this regulation is impaired for some reason, then the B cell would incur a lot of random mutations and that might lead to tumors."

The next step, then, is to figure out what sometimes goes wrong and allows the AID-RPA complex to go to the wrong regions, potentially leading to activation of cancer genes. "Now that we’ve learned how AID gets access to the variable regions, we can ask how the process goes awry to cause mutations of genes that could lead to cancer," says Alt.

RPA is found throughout the body, and is known to be involved in repairing damaged DNA, but until now, it hadn’t been known to have a role in the immune system. "We’ve discovered a new function for it," says Alt. "It’s generating quite a bit of excitement in the immunology field and promises to teach us more about the immune response."

Alt has spent his career exploring the immune system’s ability to defend against a vast array of antigens through genetic rearrangements, as well as the mechanisms the body uses to suppress genomic instability, an increased tendency toward gene mutation that can lead to cancer. In recent years, these two lines of investigation--immunology and cancer -- have intersected and informed each other.

Aaron Patnode | EurekAlert!
Further information:
http://www.harvard.edu
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>