Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find clues about how antibodies specialize

24.08.2004


Gene mutations are closely targeted -- enhancing the immune response while avoiding cancer

Researchers at Children’s Hospital Boston have begun unraveling the mystery of how B lymphocytes -- key infection-fighting cells in the body -- are able to create many different kinds of specialized antibodies through selective gene mutations, while being protected from random mutations that could give rise to cancers.

The findings, reported in the Aug. 26 issue of the journal Nature, will help scientists better understand two things: how the body is able to mount a strong immune defense against foreign attackers, and how cancers, particularly lymphomas, develop and might be prevented.



B lymphocytes, or B cells, are the immune-system cells responsible for producing antibodies – proteins that recognize, bind to, and neutralize viruses and other harmful pathogens. Since there is a huge diversity of pathogens in the environment – more than our genomes could possibly anticipate and encode for -- the antibody response has to be very fluid and adaptable. The human immune system handles antibody diversification through selective mutations to specific stretches of DNA in B cells that encode immunoglobulins, the proteins from which antibodies are made. Mutations in these gene segments – to the so-called variable regions -- give our B cells the ability to make unique, specialized antibodies with high affinity for a specific invader.

This mutation process, known as somatic hypermutation, is known to require an enzyme called activation-induced cytidine deaminase (AID). But how AID targets the variable region of the immunoglobulin genes -- while leaving the rest of the genetic material in the B cell untouched -- has been a mystery.

In the biochemical study reported in Nature, the Children’s Hospital Boston researchers discovered that another protein, known as replication protein A (RPA), interacts with AID, attaches to it, and directs AID to the specific segment of the B cell’s DNA required for a tailored immune response. The study details the process by which AID is biochemically modified to promote its interaction with RPA.

"Such a targeting mechanism for AID is essential for our immune system," says Dr. Frederick W. Alt, a Howard Hughes Medical Institute researcher at the Children’s Department of Molecular Medicine and senior investigator on the study. "Without it, we’d be immunodeficient, unable to diversify our antibody repertoire."

The Children’s study also has implications for the prevention of lymphomas, notes Dr. Jayanta Chaudhuri, first author on the study and a postdoctoral fellow in Alt’s laboratory.

"The AID-RPA interaction must be regulated to bring about the specificity of the mutation," Chaudhuri says. "If this regulation is impaired for some reason, then the B cell would incur a lot of random mutations and that might lead to tumors."

The next step, then, is to figure out what sometimes goes wrong and allows the AID-RPA complex to go to the wrong regions, potentially leading to activation of cancer genes. "Now that we’ve learned how AID gets access to the variable regions, we can ask how the process goes awry to cause mutations of genes that could lead to cancer," says Alt.

RPA is found throughout the body, and is known to be involved in repairing damaged DNA, but until now, it hadn’t been known to have a role in the immune system. "We’ve discovered a new function for it," says Alt. "It’s generating quite a bit of excitement in the immunology field and promises to teach us more about the immune response."

Alt has spent his career exploring the immune system’s ability to defend against a vast array of antigens through genetic rearrangements, as well as the mechanisms the body uses to suppress genomic instability, an increased tendency toward gene mutation that can lead to cancer. In recent years, these two lines of investigation--immunology and cancer -- have intersected and informed each other.

Aaron Patnode | EurekAlert!
Further information:
http://www.harvard.edu
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>