Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find clues about how antibodies specialize

24.08.2004


Gene mutations are closely targeted -- enhancing the immune response while avoiding cancer

Researchers at Children’s Hospital Boston have begun unraveling the mystery of how B lymphocytes -- key infection-fighting cells in the body -- are able to create many different kinds of specialized antibodies through selective gene mutations, while being protected from random mutations that could give rise to cancers.

The findings, reported in the Aug. 26 issue of the journal Nature, will help scientists better understand two things: how the body is able to mount a strong immune defense against foreign attackers, and how cancers, particularly lymphomas, develop and might be prevented.



B lymphocytes, or B cells, are the immune-system cells responsible for producing antibodies – proteins that recognize, bind to, and neutralize viruses and other harmful pathogens. Since there is a huge diversity of pathogens in the environment – more than our genomes could possibly anticipate and encode for -- the antibody response has to be very fluid and adaptable. The human immune system handles antibody diversification through selective mutations to specific stretches of DNA in B cells that encode immunoglobulins, the proteins from which antibodies are made. Mutations in these gene segments – to the so-called variable regions -- give our B cells the ability to make unique, specialized antibodies with high affinity for a specific invader.

This mutation process, known as somatic hypermutation, is known to require an enzyme called activation-induced cytidine deaminase (AID). But how AID targets the variable region of the immunoglobulin genes -- while leaving the rest of the genetic material in the B cell untouched -- has been a mystery.

In the biochemical study reported in Nature, the Children’s Hospital Boston researchers discovered that another protein, known as replication protein A (RPA), interacts with AID, attaches to it, and directs AID to the specific segment of the B cell’s DNA required for a tailored immune response. The study details the process by which AID is biochemically modified to promote its interaction with RPA.

"Such a targeting mechanism for AID is essential for our immune system," says Dr. Frederick W. Alt, a Howard Hughes Medical Institute researcher at the Children’s Department of Molecular Medicine and senior investigator on the study. "Without it, we’d be immunodeficient, unable to diversify our antibody repertoire."

The Children’s study also has implications for the prevention of lymphomas, notes Dr. Jayanta Chaudhuri, first author on the study and a postdoctoral fellow in Alt’s laboratory.

"The AID-RPA interaction must be regulated to bring about the specificity of the mutation," Chaudhuri says. "If this regulation is impaired for some reason, then the B cell would incur a lot of random mutations and that might lead to tumors."

The next step, then, is to figure out what sometimes goes wrong and allows the AID-RPA complex to go to the wrong regions, potentially leading to activation of cancer genes. "Now that we’ve learned how AID gets access to the variable regions, we can ask how the process goes awry to cause mutations of genes that could lead to cancer," says Alt.

RPA is found throughout the body, and is known to be involved in repairing damaged DNA, but until now, it hadn’t been known to have a role in the immune system. "We’ve discovered a new function for it," says Alt. "It’s generating quite a bit of excitement in the immunology field and promises to teach us more about the immune response."

Alt has spent his career exploring the immune system’s ability to defend against a vast array of antigens through genetic rearrangements, as well as the mechanisms the body uses to suppress genomic instability, an increased tendency toward gene mutation that can lead to cancer. In recent years, these two lines of investigation--immunology and cancer -- have intersected and informed each other.

Aaron Patnode | EurekAlert!
Further information:
http://www.harvard.edu
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>