Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists establish database of genes associated with cancer drug resistance

24.08.2004


Scientists at the National Cancer Institute (NCI), a part of the National Institutes of Health, have created a database of information about a group of genes associated with multidrug resistance in cancerous tumors. The research, published in the August 24, 2004, issue of Cancer Cell*, details the gene expression of a 48-member family of proteins called ABC transporters. The NCI scientists identified associations between expression of individual ABC transporters in cancer cells and resistance to specific drugs.



Though ABC transporters are primarily associated with drug resistance, the researchers report an association between some of these proteins and an increase in effectiveness of some cancer drugs. Their database should serve as a starting point for research into novel therapies designed either to evade or exploit the action of ABC transporters.

ABC transport proteins are embedded in the cell membrane and regulate traffic of many molecules, including hormones, lipids, and drugs, in and out of the cell. Because they transport toxic materials out of cells, many of these 48 proteins confer resistance to cancer drugs in humans. The study’s lead authors were Jean-Philippe Annereau, Ph.D., and Gergely Szakács, M.D., Ph.D., both visiting fellows at NCI’s Center for Cancer Research (CCR). Szakács said, "Multidrug resistance is a major barrier to effective cancer chemotherapy, and even low levels of resistance can have a significant impact on the efficacy of chemotherapy."


Though these proteins have major implications for the treatment of cancer, previous studies had characterized only 17 of them using much less sensitive techniques. Szakács and Annereau studied the ABC transporters in a group of cancer cell lines called the NCI-60 cells, which includes leukemias, melanomas, and ovarian, breast, prostate, lung, renal, and colon cancers.

They used real-time polymerase chain reaction to detect and quantify the expression of ABC transporter genes as messenger RNA in these cells. With help from collaborators in the laboratory of John Weinstein, M.D., Ph.D., also in CCR, the researchers found statistical correlations between tests of the cell lines’ sensitivity to cancer drugs and these cells’ expression of ABC transporters. Further tests, such as measuring changes in cell growth to evaluate the cells’ response to the drugs, supported the statistical correlations.

Analysis of 68,592 ABC gene and drug relationships yielded 131 strongly inverse-correlated pairs--that is, in these 131 cases, cells’ ABC gene expression was strongly correlated with decreased sensitivity to the drug. According to Michael Gottesman, M.D., one of the paper’s senior authors and chief of the Laboratory of Cell Biology in CCR, "These results indicate that some of the ABC transporters whose function remains unknown can influence the response of cells to cancer treatment."

Gottesman, Szakács, and colleagues hope this data will be used to find commonalities in compounds transported by MDR1, one of the ABC proteins most strongly associated with multidrug resistance. With this information, they could begin developing a drug to undermine MDR1’s ability to transport drugs out of the cell.

Expression of some ABC transporters, most notably MDR1, caused an increase in cancer cells’ sensitivity to some drugs. This increase was unexpected, as MDR1 is perhaps the best-known multidrug resistance protein. The researchers advocate further research in order to discover additional compounds that interact in this way with MDR1 and other ABC transporters.

NCI Press Officers | EurekAlert!
Further information:
http://www.nci.nih.gov
http://www.cancer.gov

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>