Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rac 1 and 2, two proteins essential to triggering of the immune response

23.08.2004


When a dendritic cell meets a T cell… The dendritic cell and its “arms” can be seen on the left of the images. On the right is a smaller T cell. In the first image, the dendritic cell reaches out in search of a T cell. In the second image, it finds a T cell and extends its arms towards it. In the third image, the dendritic cell entraps the T cell. © F. Benvenuti/Institut Curie


In this dendritic cell, the proteins Rac 1 and 2 are inactive. The dendritic cell is "unaware" of the presence of the T cell. © F. Benvenuti/Institut Curie


The dendritic cells act as the body’s sentries, standing guard around the clock. As soon as they detect a potential enemy, they alert the T cells, whose role is to defend the body.

At the Institut Curie, CNRS researchers in an Inserm laboratory have filmed the encounter of dendritic cells and T cells. They have shown that this "rendez-vous", which is indispensable for the activation of the immune system, cannot take place in the absence of the proteins Rac 1 and 2. Published in the August 20, 2004 issue of Science, this discovery yields new information on the immune system and could in time pave the way for advances in immunotherapy.

Our immune system is on call round the clock. Whenever a foreign body intrudes (virus, bacterium…), or even in response to the anarchic proliferation of the body’s own cells (cancer), the immune system sounds the alarm.



Dendritic cells are the "sentries" responsible for detecting the presence of an intruder in our body. When they locate a potentially dangerous cell, they partially ingest it and isolate a characteristic fragment, an antigen(1). Bearing this fragment they then migrate to the lymph nodes, where the T cells are to be found. The dendritic cells present the antigen to T cells, thus enabling them to recognize the enemy, which they must eliminate. Once informed, T cells launch a targeted offensive to rid the body of bacteria, tumor cells or virus-infected cells. At the Institut Curie, Sebastian Amigorena(2) and his team are studying how the body’s sentries identify the antigen and then present it to the T cells.

The dendritic cell stretches out its arms…

To observe the in vivo meeting between dendritic cells and T cells in the lymph nodes, Sebastian Amigorena and colleagues, in partnership with Luc Fetler(3), have used the highly sophisticated technique of two-photon microscopy (see box). This is the first time in Europe that two-photon microscopy has been utilized to follow the triggering of immune responses in vivo, in intact organs.

Rather like starfish, dendritic cells have several "arms", formed by membrane extensions. Once they reach the lymph nodes, the dendritic cells stretch out these arms in their search for T cells(4).

…and entraps the T cell

When a T cell is found, the dendritic cell’s arms stretch towards it by extension of the cell membrane and "engulf" it. The Institut Curie scientists noted that this "engulfment", which is essential to effective triggering of an immune response, cannot occur without the presence of proteins Rac 1 and 2(5). These two proteins control the extension of the dendritic cell membrane when the T cell is contacted. When Rac 1 and 2 are inactivated, the meeting between the T cells and the dendritic cells does not happen and as a result the immune response is not triggered.

This discovery should lead to optimization of one of the promising approaches to cancer treatment – immunotherapy, in which the immune system is used to destroy tumor cells. By measuring the expression and activation state of Rac 1 and 2, it may be possible to assess, and if necessary enhance, the efficacy of dendritic cells in initiating the immune response.

Catherine Goupillon | alfa

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>