Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rac 1 and 2, two proteins essential to triggering of the immune response

23.08.2004


When a dendritic cell meets a T cell… The dendritic cell and its “arms” can be seen on the left of the images. On the right is a smaller T cell. In the first image, the dendritic cell reaches out in search of a T cell. In the second image, it finds a T cell and extends its arms towards it. In the third image, the dendritic cell entraps the T cell. © F. Benvenuti/Institut Curie


In this dendritic cell, the proteins Rac 1 and 2 are inactive. The dendritic cell is "unaware" of the presence of the T cell. © F. Benvenuti/Institut Curie


The dendritic cells act as the body’s sentries, standing guard around the clock. As soon as they detect a potential enemy, they alert the T cells, whose role is to defend the body.

At the Institut Curie, CNRS researchers in an Inserm laboratory have filmed the encounter of dendritic cells and T cells. They have shown that this "rendez-vous", which is indispensable for the activation of the immune system, cannot take place in the absence of the proteins Rac 1 and 2. Published in the August 20, 2004 issue of Science, this discovery yields new information on the immune system and could in time pave the way for advances in immunotherapy.

Our immune system is on call round the clock. Whenever a foreign body intrudes (virus, bacterium…), or even in response to the anarchic proliferation of the body’s own cells (cancer), the immune system sounds the alarm.



Dendritic cells are the "sentries" responsible for detecting the presence of an intruder in our body. When they locate a potentially dangerous cell, they partially ingest it and isolate a characteristic fragment, an antigen(1). Bearing this fragment they then migrate to the lymph nodes, where the T cells are to be found. The dendritic cells present the antigen to T cells, thus enabling them to recognize the enemy, which they must eliminate. Once informed, T cells launch a targeted offensive to rid the body of bacteria, tumor cells or virus-infected cells. At the Institut Curie, Sebastian Amigorena(2) and his team are studying how the body’s sentries identify the antigen and then present it to the T cells.

The dendritic cell stretches out its arms…

To observe the in vivo meeting between dendritic cells and T cells in the lymph nodes, Sebastian Amigorena and colleagues, in partnership with Luc Fetler(3), have used the highly sophisticated technique of two-photon microscopy (see box). This is the first time in Europe that two-photon microscopy has been utilized to follow the triggering of immune responses in vivo, in intact organs.

Rather like starfish, dendritic cells have several "arms", formed by membrane extensions. Once they reach the lymph nodes, the dendritic cells stretch out these arms in their search for T cells(4).

…and entraps the T cell

When a T cell is found, the dendritic cell’s arms stretch towards it by extension of the cell membrane and "engulf" it. The Institut Curie scientists noted that this "engulfment", which is essential to effective triggering of an immune response, cannot occur without the presence of proteins Rac 1 and 2(5). These two proteins control the extension of the dendritic cell membrane when the T cell is contacted. When Rac 1 and 2 are inactivated, the meeting between the T cells and the dendritic cells does not happen and as a result the immune response is not triggered.

This discovery should lead to optimization of one of the promising approaches to cancer treatment – immunotherapy, in which the immune system is used to destroy tumor cells. By measuring the expression and activation state of Rac 1 and 2, it may be possible to assess, and if necessary enhance, the efficacy of dendritic cells in initiating the immune response.

Catherine Goupillon | alfa

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>