Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic clues found for common congenital brain disorder

23.08.2004


Thanks to a productive collaboration between clinical and basic scientists, researchers from the University of Chicago have identified the first genetic cause of one of the most common birth defects of the brain, Dandy-Walker malformation (DWM). Infants with this disorder, about one in 10,000 births, have a small, displaced cerebellum and other brain abnormalities that can reduce coordination, impair mental function and cause hydrocephalus.



In the September, 2004, issue of Nature Genetics -- to be published online August 22 -- the researchers show that in humans, loss of one copy of each of two adjacent genes, known as ZIC1 and ZIC4, causes Dandy-Walker. The researchers then used this finding to create a mouse model to allow them to study the developmental basis of the disorder.

"Dandy-Walker malformation is an important clinical problem as well as a scientific mystery," said study co-author William Dobyns, M.D., professor of human genetics, neurology and pediatrics at the University of Chicago and an author of the study. "We see about 20 cases per year, but until recently, there was not even an understanding that Dandy-Walker had a genetic basis."


"Knowing more about the genes also should improve our ability to make a prenatal diagnosis," he added, "which has always relied upon ultrasound. Finding the genes will help us inform parents about the risks of having another affected child."

"This discovery provides one of the first real avenues for understanding human birth defects that affect the cerebellum," said study author Kathleen Millen, Ph.D., assistant professor of human genetics at the University of Chicago. "Until now, we have had no understanding of what goes wrong during development to cause this malformation. We now know some of the genes involved and have a mouse model to study to figure this out."

This work may also have broader implications. Understanding what goes wrong in Dandy-Walker malformation could provide clues about autism, in which similar but much milder cerebellar abnormalities are common. The hunt for the Dandy-Walker genes began when a child from Kansas with a missing piece of chromosome 3 was found to have DWM and was referred to Dr. Dobyns for an evaluation. Inspired by this clue, Inessa Grinberg, an M.D./Ph.D. student working with Millen and Dobyns, began to scour the Internet looking for parent support web sites for children with DWM, and for separate web sites for parents of children with chromosome 3 abnormalities.

The team eventually found eight patients -- including five found via the Internet -- who had overlapping deletions of genetic material from chromosome 3. This narrowed the search to one part of that chromosome. Although the implicated region contained an estimated 15 genes, two were likely candidates. ZIC1, short for Zinc finger in cerebellum 1, was a known gene that played a role in development of the cerebellum in mice. ZIC4 was previously uncharacterized but was similar to ZIC1.

When the researchers generated mice with altered ZIC1 and ZIC4 genes they found a syndrome virtually identical to the human disorder. Mice with one dysfunctional copy of either gene had mild anatomic abnormalities but no behavioral changes. But about 15 percent of the mice that had one normal and one abnormal version of both ZIC1 and ZIC4 had abnormalities in the cerebellum that were very similar to the brains of patients with Dandy-Walker. They also lacked coordination and were unable to right themselves if they fell over.

Although the authors conclude that "heterozygous loss of ZIC1 and ZIC4 is the cause of Dandy-Walker malformation in deletion 3q2 patients," they caution that other genes are clearly involved, which is why only 15 percent of the mice with the characteristic deletions had severe symptoms. "The genetics of Dandy-Walker are very complicated," said Dr. Millen.

"We still don’t know all we want to know about this disorder," added Dobyns, "but now we have a foot in the door for understanding this and other cerebellar defects."

A genetic test could improve prenatal diagnosis. Currently, detecting Dandy-Walker with ultrasound images is difficult and often uncertain until late in a pregnancy, usually after 20 weeks. Most parents, fearing mental retardation, choose to terminate the pregnancy if the disorder is diagnosed soon enough. A reliable genetic test could provide better information earlier and could be used to reassure parents that a subsequent pregnancy was normal.

The story of Dandy-Walker malformation has come full circle, note the authors. The name comes from the physicians Walter Dandy of Johns Hopkins, and Earl Walker, who was a neurosurgeon at the University of Chicago in 1942 when he described the malformation that was subsequently named after him. "Finding these genes here at the University of Chicago is a kind of ’coming home’ story," Millen said.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>