Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Basic research producing new anthrax therapies

23.08.2004


Thanks to new screening tools, and some luck, researchers at the University of Chicago have discovered three unrelated compounds that inhibit the two toxins – edema factor and lethal factor -- that have made anthrax one of the most feared of potential bioterror agents.

In the August 2004 issue of the journal Chemistry and Biology, the researchers report that they used a novel screening technique, developed at the University, to find a small molecule that prevents edema factor from connecting to its target within the cell.

A similar approach, reported in Nature Biotechnology in May, resulted in a compound that inhibits lethal factor, the other anthrax toxin. And a study published in PNAS in February showed that a drug already approved to treat hepatitis was also effective in the lab against edema factor.



"This is dramatic example of how progress in basic science can be applied quickly, effectively and unpredictably to clinical problems," said Wei-Jen Tang, Ph.D., associate professor in the Ben May Institute for Cancer Research at the University of Chicago and an author of all three studies. "Our lab began working with edema factor as a tool to understand basic cellular metabolism, but the knowledge we gained soon led us to three potential therapies."

Because each drug disrupts a different link of the chain of toxic events, the therapies should be complementary. Although all three treatments appear promising in the test tube, none has yet been tested clinically caution the authors. Cell culture and animal testing is underway.

Until 2001, Bacillus anthracis, the bacterium that causes anthrax, was an obscure agricultural pathogen, but that fall someone sent letters stuffed with anthrax spores to several politicians and journalists. Nearly half (5/11) of those infected by breathing in the spores died from the disease. The anthrax mailings triggered a run on antibiotics, but these drugs only work in the early stages of anthrax infection, before the bacteria have had time to spread and secrete toxins. "These attacks called attention to the need for better therapies for anthrax infection," said Tang.

Fortunately, the Tang lab was already studying edema factor, using it as a molecular probe to understand cell-cell communication. His team had sent a manuscript describing the three-dimensional structure of anthrax edema factor to the journal Nature a few days before the first terrorist use of the microbe became public.

In that paper, Tang and colleagues showed how edema factor did its damage. Inside an infected cell, edema factor connects with a protein called calmodulin. Calmodulin changes the toxin’s shape, creating a conformation that functions just like a cellular enzyme called adenylyl cyclase, which helps regulate cell-to-cell signaling.

When edema factor connects with calmodulin, however, it becomes a relentless version of adenylyl cyclase – 1,000-fold more potent -- causing affected cells to become hyperactive. These cells devour their energy stores, lose the ability to regulate their environment, release water, causing edema (swelling) in surrounding tissues, and die.

Because of the bioterrorist attacks a few months before, the discovery received widespread attention. A researcher at a pharmaceutical company happened to notice newspaper accounts of the work and suspected that a drug he studied, called adefovir dipivoxil, acted on the same metabolic pathway. He sent Tang several candidate compounds and Tang’s lab found that the active metabolite of adefovir also blocks edema factor.

The Chemistry and Biology paper describes a more systematic and less fortuitous approach. Tang and colleague Milan Mrksich, Ph.D., professor in the department of chemistry and the Institute for Biophysical Dynamics at the University of Chicago, used the combination of two screening methods, developed by Tang and Mrksich, to examine a library of 10,000 compounds in search of small molecules that inhibited edema factor.

They uncovered one that very effectively prevented edema factor from binding to calmodulin. Although this compound was itself quite toxic, the researchers were able to make slight modifications that removed the toxicity without altering its ability to block edema factor. They named their non-toxic version Nitro10506-2A.

This discovery followed a report from Tang and Mrksich in May that used a similar approach to identify a compound that halts the activity of lethal factor, the other anthrax toxin, in laboratory tests. Lethal factor shreds a protein that helps cells stay healthy. The compound they found, called DS-998, blocks lethal factor’s harmful cutting action.

Nitro10506-2A and DS-998 could lead to the development of new drugs for the treatment of anthrax, Tang said, but he cautioned that research remains in the early stages. "Discovering proteins that have roles in disease processes is the first step in the drug discovery process," added Mrksich, "but still a very long way from the actual development of a drug."

The National Institutes of Health and the National Science Foundation funded the study. Additional authors include Young-Sam Lee, Pamela Bergson and Wei Song He of the University of Chicago.

John Easton | EurekAlert!
Further information:
http://www.uchicago.edu
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>