Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food Fight: Wolves Pack Up to Out-eat Ravens

23.08.2004


New research on the wolves of Isle Royale may shed light on a mystery that has long puzzled biologists: Why do some predators band together to hunt?

"Most species of predators live solitary lives," says John Vucetich, a research assistant professor of wildlife ecology at Michigan Technological University. "Biologists have always wanted to know why the few exceptions live in groups."

In his observations of wolves and ravens, Vucetich may have found the answer: Predators that hunt in groups lose far less meat to scavangers. Earlier, scientists had guessed that wolves hunting in a large pack would bring down more food per wolf, so each individual would get more to eat. However, studies showed that wasn’t the case. "According to their calculations, wolves in big packs got less food," Vucetich said. "It didn’t make sense."



So Vucetich examined the methodology and discovered a problem. Scientists had calculated the amount of food available based on the weight of the prey killed, not on the amount that the wolves actually ate. "Then I thought, ’OK, what you kill isn’t relevant; it’s what you consume,’" he said. "What happens after the kill? Suddenly, scavengers are really important."

For wolves, ravens are the really important scavengers. "You never see wolves without ravens nearby," Vucetich said. "They are ubiquitous at kills." On Isle Royale National Park, located in Lake Superior, five to 15 ravens are found on the carcasses of moose killed by wolves. And on the mainland, the numbers can be far higher: About 100 ravens were once counted around the carcasses of a few wolf-killed deer.

"So we asked the questions: How much can a raven take per day? It can eat and stash about two pounds. How much can a wolf eat? Up to 18 pounds in a few hours," Vucetich said. "We put the pieces together, and we found that in bigger packs, both the pack and the individuals actually get more food, not less."

Ravens are intelligent, fast and agile. It’s useless for wolves to waste energy chasing them away from a carcass because the ravens come right back, so they don’t. Instead, wolves simply out-eat the ravens, and thus the advantage of a large pack becomes clear.

Based on his discovery, Vucetich thinks any predator that hunts large prey has to have some strategy to deal with scavengers. They can make their kills in dense cover, like tigers, or haul the carcass off to a secluded spot, like leopards. Lions usually hunt in groups, which helps when a gang of hyenas shows up.

Solitary hunters can find themselves at a loss when confronted with unexpected scavengers. "A colleague of mine saw a mountain lion kill an elk in the open," Vucetich said. Mountain lions usually hide their large prey after a kill, and their behavior hasn’t adapted to deal with scavanging ravens. "Ravens found the kill, and the mountain lion went nuts trying to chase them away.” "The moral of the story is, if you’re eating something big, you have to have a way to deal with scavengers."

Vucetich’s work is supported by the National Science Foundation, Isle Royale National Park and Earthwatch. His article, “Raven Scavenging Favours Group Foraging in Wolves,” has been published in the June 2004 edition of the journal Animal Behaviour and is posted online at http://dx.doi.org/10.1016/j.anbehav.2003.06.018 The co-authors are Rolf Peterson, of Michigan Technological University, and Thomas Waite, of Ohio State University.

| newswise
Further information:
http://www.mtu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>