Chemical engineers discover filtration system to help biotech industry

Chemical engineers at New Jersey Institute of Technology (NJIT) have developed a new filtration system to enable scientists and engineers to separate and purify two different kinds of proteins having relatively close molecular weight. Until now, doing such separations with membrane filtration was impossible. This research was reported in the June 20, 2004 issue of Biotechnology and Bioengineering.


“This is good news,” said Kamalesh K. Sirkar, PhD, distinguished professor of chemical engineering and the project’s lead researcher. “To separate the good from the bad proteins is an important engineering breakthrough. We believe that pharmaceutical companies will immediately be able to put our research to work.”

Before this invention, proteins had to differ five to six times in their molecular weight, before a scientist or engineer could separate them using a process called ultra-filtration. “Now using a new kind of membrane that we invented at NJIT, the proteins can have almost the same molecular weight,” said Sirkar. The process also will be more cost-effective because the machines can run on a continuous basis.

“The reason we think this process will be important to the industry is because purification of protein is important to its end use,” said Sirkar. Impure proteins can’t be used in any biopharmaceutical applications. However, when scientists in the past have gone to separate proteins and remove impurities by chromatography, costs have escalated.

NJIT has funded this research to date. The next step is to seek outside funding because more work needs to be done. “We know the process will work with a mixture of two proteins. But, Sirkar speculated, will it work if the mixtures contain three or four proteins? More questions include: can it be used on viruses or endotoxins –the outer coating of a particular type of bacteria? Will the process work with non-biological macromolecules such as dextran? “We think it can be used, but we don’t know,” said Sirkar. “That’s why we are seeking additional funding to continue this research.”

Sirkar, a noted expert in the membrane filtration processes and holder of more than 20 patents, has been a research professor at NJIT since 1992. He is now the NJIT Foundation Professor of Membrane Separations. Sirkar also directs the NJIT Center for Membrane Technologies. The long-time Bridgewater Township resident received a master’s degree and doctorate in chemical engineering from the University of Illinois (Urbana). Meredith Feins, PhD, a June 2004 graduate of NJIT’s doctoral program in chemical engineering, worked on this research in the laboratory. Feins grew up in Cedar Grove and now resides in River Vale.

Media Contact

Sheryl Weinstein EurekAlert!

More Information:

http://www.njit.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A new look at the consequences of light pollution

GAME 2024 begins its experiments in eight countries. Can artificial light at night harm marine algae and impair their important functions for coastal ecosystems? This year’s project of the training…

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

Partners & Sponsors