Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical engineers discover filtration system to help biotech industry

20.08.2004


Chemical engineers at New Jersey Institute of Technology (NJIT) have developed a new filtration system to enable scientists and engineers to separate and purify two different kinds of proteins having relatively close molecular weight. Until now, doing such separations with membrane filtration was impossible. This research was reported in the June 20, 2004 issue of Biotechnology and Bioengineering.



"This is good news," said Kamalesh K. Sirkar, PhD, distinguished professor of chemical engineering and the project’s lead researcher. "To separate the good from the bad proteins is an important engineering breakthrough. We believe that pharmaceutical companies will immediately be able to put our research to work."

Before this invention, proteins had to differ five to six times in their molecular weight, before a scientist or engineer could separate them using a process called ultra-filtration. "Now using a new kind of membrane that we invented at NJIT, the proteins can have almost the same molecular weight," said Sirkar. The process also will be more cost-effective because the machines can run on a continuous basis.


"The reason we think this process will be important to the industry is because purification of protein is important to its end use," said Sirkar. Impure proteins can’t be used in any biopharmaceutical applications. However, when scientists in the past have gone to separate proteins and remove impurities by chromatography, costs have escalated.

NJIT has funded this research to date. The next step is to seek outside funding because more work needs to be done. "We know the process will work with a mixture of two proteins. But, Sirkar speculated, will it work if the mixtures contain three or four proteins? More questions include: can it be used on viruses or endotoxins –the outer coating of a particular type of bacteria? Will the process work with non-biological macromolecules such as dextran? "We think it can be used, but we don’t know," said Sirkar. "That’s why we are seeking additional funding to continue this research."

Sirkar, a noted expert in the membrane filtration processes and holder of more than 20 patents, has been a research professor at NJIT since 1992. He is now the NJIT Foundation Professor of Membrane Separations. Sirkar also directs the NJIT Center for Membrane Technologies. The long-time Bridgewater Township resident received a master’s degree and doctorate in chemical engineering from the University of Illinois (Urbana). Meredith Feins, PhD, a June 2004 graduate of NJIT’s doctoral program in chemical engineering, worked on this research in the laboratory. Feins grew up in Cedar Grove and now resides in River Vale.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>