Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell-cycle triggers might be cancer drug targets

20.08.2004


Cyclin D proteins not required for development of tissues, as previously believed

In an experiment that appears to refute current theory, Dana-Farber Cancer Institute scientists have found that removing three key proteins believed essential to cell division and growth had little impact on normal tissue development of a mouse embryo. These same proteins, when overly active, have been linked to cancer cell proliferation.

With one significant exception, the absence of proteins called cyclin D1, D2, and D3 seemed to have no deleterious effect on development of the tissues and organs of laboratory mouse embryos. "D-type cyclins" are molecules that sense growth signals from the cell’s environment and, when appropriate, switch on cell division and growth. But when the system is faulty, the cyclins over-respond to the growth signals and can cause cancerous growth. The discovery that these proteins aren’t indispensable lends encouragement to an idea that blocking overactive cyclins could halt the growth of cancer.



In the Aug. 20 issue of Cell, lead author Katarzyna Kozar, MD, and senior author Peter Sicinski, MD, PhD, report on developing the first mouse embryos to date in which all three D-type cyclins were absent or "knocked out." It had been thought that at least one cyclin was required for an embryo to be viable and its tissues to form normally. Yet the "triple-knockout" mouse embryos followed a normal course of cell division and proliferation until as late as 13.5 days, when most tissues and organs are already formed. A typical mouse pregnancy last 18 days.

(In a companion paper in Cell, researchers from Spain report similar findings involving protein kinases called CDK4 and CDK6, which are molecular partners of the D-cyclins. Embryonic mice with both CDK molecules knocked out had normal tissue development as well.)

The unexpectedly viable embryos contradict theory and previous laboratory experiments. The only abnormality in the triple knockout mice was a deficiency of blood-forming cells, causing them to be pale and anemic, and was ultimately fatal. But the Dana-Farber researchers can’t yet say if this would create problems for an anti-cyclin cancer therapy in patients. "It’s not known whether D cyclins are required for blood cell generation in adults," said Sicinski. "We are addressing this in ongoing experiments."

The blood system issue aside, the results remove a major theoretical objection to developing drugs that would inhibit, or block, overactivity of cyclin D proteins, according to the study’s authors. Excess cyclin D production has been seen in tumors of the breast, head and neck and stomach, and in some blood cancers.

The main function of the D cyclins is a linking one. They respond to signals outside the cell and turn the cell-cycle machinery on when needed, enabling the cell to adjust to changes in environment. How this process is carried out in the mouse embryos with no D-type cyclins is a puzzle, says Sicinski who is also an associate professor at Harvard Medical School. "There must be alternative mechanisms that allow the cell to respond to the environment when the D-type cyclins are missing," he speculates.

But the blood-forming cells may lack such an alternative pathway, said Sicinski, and it is highly likely that cancer cells don’t, making them vulnerable to future drugs aimed at D-cyclins, or their partners, the CDK kinases.

In the Cell report, the researchers say they attempted to induce cancer in cells taken from embryos lacking the cyclins, and they remained stubbornly normal. By contrast, cells that contained the cyclins were easily made cancerous by the insertion of cancer-causing oncogenes.

That was what the scientists had hoped they would see, based on experiments reported by Sicinski in 1995 showing that mice lacking cyclin D1 had very little breast tissue and, when crossed with cancer-prone mice, had offspring that were largely protected against breast cancer.

It was those and other findings that raised the prospect of cancer therapy using drugs to block D1 and other cyclins. "Now we think it should be safe to target the cyclins with drugs that would be designed specifically to inhibit them," Sicinski says.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>