Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell-cycle triggers might be cancer drug targets

20.08.2004


Cyclin D proteins not required for development of tissues, as previously believed

In an experiment that appears to refute current theory, Dana-Farber Cancer Institute scientists have found that removing three key proteins believed essential to cell division and growth had little impact on normal tissue development of a mouse embryo. These same proteins, when overly active, have been linked to cancer cell proliferation.

With one significant exception, the absence of proteins called cyclin D1, D2, and D3 seemed to have no deleterious effect on development of the tissues and organs of laboratory mouse embryos. "D-type cyclins" are molecules that sense growth signals from the cell’s environment and, when appropriate, switch on cell division and growth. But when the system is faulty, the cyclins over-respond to the growth signals and can cause cancerous growth. The discovery that these proteins aren’t indispensable lends encouragement to an idea that blocking overactive cyclins could halt the growth of cancer.



In the Aug. 20 issue of Cell, lead author Katarzyna Kozar, MD, and senior author Peter Sicinski, MD, PhD, report on developing the first mouse embryos to date in which all three D-type cyclins were absent or "knocked out." It had been thought that at least one cyclin was required for an embryo to be viable and its tissues to form normally. Yet the "triple-knockout" mouse embryos followed a normal course of cell division and proliferation until as late as 13.5 days, when most tissues and organs are already formed. A typical mouse pregnancy last 18 days.

(In a companion paper in Cell, researchers from Spain report similar findings involving protein kinases called CDK4 and CDK6, which are molecular partners of the D-cyclins. Embryonic mice with both CDK molecules knocked out had normal tissue development as well.)

The unexpectedly viable embryos contradict theory and previous laboratory experiments. The only abnormality in the triple knockout mice was a deficiency of blood-forming cells, causing them to be pale and anemic, and was ultimately fatal. But the Dana-Farber researchers can’t yet say if this would create problems for an anti-cyclin cancer therapy in patients. "It’s not known whether D cyclins are required for blood cell generation in adults," said Sicinski. "We are addressing this in ongoing experiments."

The blood system issue aside, the results remove a major theoretical objection to developing drugs that would inhibit, or block, overactivity of cyclin D proteins, according to the study’s authors. Excess cyclin D production has been seen in tumors of the breast, head and neck and stomach, and in some blood cancers.

The main function of the D cyclins is a linking one. They respond to signals outside the cell and turn the cell-cycle machinery on when needed, enabling the cell to adjust to changes in environment. How this process is carried out in the mouse embryos with no D-type cyclins is a puzzle, says Sicinski who is also an associate professor at Harvard Medical School. "There must be alternative mechanisms that allow the cell to respond to the environment when the D-type cyclins are missing," he speculates.

But the blood-forming cells may lack such an alternative pathway, said Sicinski, and it is highly likely that cancer cells don’t, making them vulnerable to future drugs aimed at D-cyclins, or their partners, the CDK kinases.

In the Cell report, the researchers say they attempted to induce cancer in cells taken from embryos lacking the cyclins, and they remained stubbornly normal. By contrast, cells that contained the cyclins were easily made cancerous by the insertion of cancer-causing oncogenes.

That was what the scientists had hoped they would see, based on experiments reported by Sicinski in 1995 showing that mice lacking cyclin D1 had very little breast tissue and, when crossed with cancer-prone mice, had offspring that were largely protected against breast cancer.

It was those and other findings that raised the prospect of cancer therapy using drugs to block D1 and other cyclins. "Now we think it should be safe to target the cyclins with drugs that would be designed specifically to inhibit them," Sicinski says.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>