Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Identifies Additional Genetic Mutations in SIDS Babies: Focus is on the Autonomic Nervous System

20.08.2004


A new study has identified mutations in genes pertinent to the autonomic nervous system among babies who died of sudden infant death syndrome (SIDS) that might explain why they died. The study appears in the September issue of Pediatric Research.



Dr. Debra E. Weese-Mayer, professor of pediatrics and director of Pediatric Respiratory Medicine at Rush University Medical Center, and colleagues at Rush and at the University of Pittsburgh conducted a case-control study in which they compared genetic material from 92 SIDS babies and 92 control subjects (who survived the first year of life and had no family history for autonomic diseases).

Her study found 11 different protein-changing rare mutations in 14 of the 92 SIDS cases but only one such mutation in two of the 92 control cases. Of the 15.2 percent of the SIDS babies who had one of these mutations, 71 percent were African American babies, an observation that may explain in part the ethnic disparity in SIDS, Weese-Mayer said.


SIDS is defined as the sudden and unexpected death of an infant under one year of age that remains unexplained after a thorough clinical history, death scene investigation and postmortem examination. Public health measures have been successful in reducing the mortality rate of babies from SIDS from 1.2 deaths per 1000 live births in 1992 to 0.55 per 1000 births in 2001. However, Weese-Mayer pointed out that black infants have a higher SIDS incidence and a slower decline rate compared with white infants.

"Tragically, infants of all ethnic groups continue to succumb to SIDS despite many parents demonstrating full compliance with known modifiable risk factors," she said.

The realization that even with the Back to Sleep campaigns, nearly 2,300 babies were still dying each year from SIDS in the U.S., many of whom had no identifiable risk factors or behavioral compliance issues, spurred researchers like Weese-Mayer to pursue non-traditional explanations for SIDS. In 2000, Boston researchers identified decreased serotonergic receptor binding in the brainstems of SIDS victims. Then in 2001, Japanese researchers studied the serotonin transporter gene promoter region and discovered an association between the long allele and SIDS in Japanese babies.

In 2003 Weese-Mayer and colleagues confirmed this association in white and African American SIDS cases relative to controls. Later in the same year, Weese-Mayer and colleagues reported an association between SIDS and a serotonin transporter gene intron 2 polymorphism, also known to regulate serotonin transporter expression. The association was significant in black SIDS cases vs. controls, with the SIDS-associated genotype leading to more effective transporter production. Further, the SIDS-related polymorphisms in the promoter and intron 2, when paired, were significantly associated with SIDS in the black subgroup. Taken together, these results provide strong evidence for a relationship between SIDS risk and serotonin transporter gene activity and represent an important step in the study of a genetic basis for SIDS.

The serotonin connection provided the logical segue to the current study by Weese-Mayer and colleagues. Specifically, serotonin influences a broad range of physiological systems and is involved in ANS regulation. Dysfunction in the ANS has been reported among infants who have succumbed to SIDS. Accordingly, to further elucidate the genetic profile that might increase an infant’s vulnerability to SIDS, Dr. Weese-Mayer and colleagues focused on genes pertinent to the embryologic origin of the ANS. This approach has been successful in clarifying the genetic basis of idiopathic congenital central hypoventilation syndrome (CCHS), also known to have associated ANS dysregulation and thought to be related to SIDS.

Children with CCHS have been recently identified as heterozygous for the polyalanine expansion mutation in the PHOX2b gene in up to 97% of cases. Just as in the early investigation of CCHS, Dr. Weese-Mayer and colleagues hypothesized that a subset of SIDS cases might have unique mutations or polymorphisms in genes identified embryologically or through knock-out models to be involved in ANS regulation. The specific genes reported in this new publication include MASH1, BMP2, PHOX2a, PHOX2b, RET, ECE1, EDN1, TLX3 and EN1.

"These data represent further refinement of the genetic profile that might place an infant at increased risk for SIDS," Weese-Mayer concluded.

These results represent the first report describing analysis of homeobox and signal transduction genes important in specifying cell fate in ANS differentiation in SIDS cases. The observation that none of the SIDS cases demonstrated the PHOX2b mutation previously identified in CCHS indicates less specific overlap between the two diseases than previously considered (children with CCHS have generalized ANS dysregulation and typically present in the newborn period requiring artificial ventilatory support; infants who succumb to SIDS are seemingly normal yet have ANS dysregulation). However, as families of CCHS probands?? have a higher incidence of SIDS history in a family member, it may still be appropriate to evaluate SIDS cases for the PHOX2b mutation to ascertain that CCHS was not the cause of death.

The mutations identified in this study may be benign polymorphisms or may be mutations specifically related to the SIDS phenotype. The greatest number of rare mutations was identified in the RET gene. This is of particular interest because of the relationship of RET to Hirschsprung disease and to CCHS, and because of the RET knockout model with a depressed ventilatory response to inhaled carbon dioxide with decreased frequency and tidal volume. The knock out models for ECE1 and TLX3 also include impaired breathing and/or early death in the mouse phenotype, with suggestion of a central respiratory deficit. Further research is necessary to better understand the role of these and other genes in the SIDS phenotype and in explaining the ethnic disparity in SIDS. Once the genetic profile is complete, then intervention strategies can be considered and ideally implemented.

Chris Martin | EurekAlert!
Further information:
http://www.rush.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>