Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene associatied with lupus identified

19.08.2004


Researchers at the University of Minnesota have identified, for the first time, a gene variation associated with systemic lupus erythematosus (SLE), a complex, inflammatory autoimmune disease that affects multiple organs. The gene variation, known as PTPN22, is found in approximately 16 percent (or one in six) of healthy Caucasians in the United States. However, nearly one in four (or 23 percent) lupus patients carry this variant, which has also now been associated with risk for type 1 diabetes and rheumatoid arthritis. The study is published in the September edition of the American Journal of Human Genetics.



"This appears to be a very important gene for lupus," said Timothy W. Behrens, M.D., professor of medicine, Medical School, and principal investigator, "and this is the first time we have identified a variant that predisposes to many different autoimmune diseases. We hope that this discovery will lead to the identification of other genes associated with lupus and other immune disorders." Behrens believes that dozens of genes may be responsible for lupus and that discovering the combination of these genes will be important to developing better diagnosis and treatment of the disease.

In SLE, a person’s immune system begins attacking its own tissues. Organs commonly targeted in SLE include the skin, kidneys, joints, lungs, and the central nervous system. The severity of disease and the response to therapy vary widely between patients, said Behrens, and this leads to significant challenges in the diagnosis and management of lupus. "If we know which genes predispose a person to lupus, we may be able to diagnose and treat the disease earlier," he said. "In addition to discovering which combination of genes lead to lupus and other immune diseases, we also hope this information will help us identify new drugs and therapies."

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>