Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene associatied with lupus identified

19.08.2004


Researchers at the University of Minnesota have identified, for the first time, a gene variation associated with systemic lupus erythematosus (SLE), a complex, inflammatory autoimmune disease that affects multiple organs. The gene variation, known as PTPN22, is found in approximately 16 percent (or one in six) of healthy Caucasians in the United States. However, nearly one in four (or 23 percent) lupus patients carry this variant, which has also now been associated with risk for type 1 diabetes and rheumatoid arthritis. The study is published in the September edition of the American Journal of Human Genetics.



"This appears to be a very important gene for lupus," said Timothy W. Behrens, M.D., professor of medicine, Medical School, and principal investigator, "and this is the first time we have identified a variant that predisposes to many different autoimmune diseases. We hope that this discovery will lead to the identification of other genes associated with lupus and other immune disorders." Behrens believes that dozens of genes may be responsible for lupus and that discovering the combination of these genes will be important to developing better diagnosis and treatment of the disease.

In SLE, a person’s immune system begins attacking its own tissues. Organs commonly targeted in SLE include the skin, kidneys, joints, lungs, and the central nervous system. The severity of disease and the response to therapy vary widely between patients, said Behrens, and this leads to significant challenges in the diagnosis and management of lupus. "If we know which genes predispose a person to lupus, we may be able to diagnose and treat the disease earlier," he said. "In addition to discovering which combination of genes lead to lupus and other immune diseases, we also hope this information will help us identify new drugs and therapies."

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>