Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet success in targeting sugar molecules to cells in living animals

19.08.2004


New tool offers scientists great flexibility



Howard Hughes Medical Institute researchers have successfully targeted unnatural sugar molecules with chemically unique functional groups onto the surfaces of cells in living animals without altering the animals’ physiology.
The achievement is a significant advance in the promising new field of metabolic engineering because it provides a new tool with which researchers can label specific cells in whole animals so that they can differentiate one cell from another.

The researchers said the new approach to marking cell-surface sugars could lead to improved understanding of fundamental cellular processes where sugars are known to play an important role, such as in interaction with pathogens, and in mediating inflammation and disease. The research may also make it possible to target the delivery of chemical agents to specific cell types in living organisms more precisely.



Led by Howard Hughes Medical Institute Medical Institute investigator Carolyn R. Bertozziat the University of California, Berkeley, the researchers published their findings in the August 19, 2004, issue of the journal Nature.

"The method introduced by Bertozzi and colleagues is remarkable as a chemical process," wrote David A. Tirrell of the California Institute of Technology in an accompanying News and Views article in Nature. "The fact that specific chemical transformations can now be accomplished with spatial and temporal control in live animals is a major step forward for chemistry."

Glycosylation is the addition of carbohydrate (sugar) groups to a molecule. It has long been known that the glycosylation patterns of sugar molecules on cell surfaces can influence their interaction with other cells. "Glycobiologists have known that cancer cells, for example, exhibit changes in glycosylation patterns when compared with their normal healthy tissue counterparts," said Bertozzi. "And there are changes in glycosylation of blood vessels at sites of chronic inflammation that are characteristic of disease. There are even some reports in changes of glycosylation in the brains of people who have prion disease or Alzheimer’s disease," she said.

Additional studies suggest that glycosylation patterns on embryonic cells may serve as developmental markers because they change as the embryo grows. Thus, studying changes in glycosylation could improve understanding of embryonic development.

But studying the role of cell surface sugar chains, called polysaccharides, in disease is best done in the context of multiple cells, said Bertozzi. "All the interesting biology we want to study takes place at the level of whole organisms. This is a general feature of glycobiology; polysaccharides exert their function largely at the systems level," she said. This is in contrast to many proteins, such as enzymes, whose function can be studied by purifying and analyzing individual molecules.

Despite the promise of these studies, researchers faced a major challenge in finding the means to target sugars with specific markers for biological study to the surface of cells. Sugars are synthesized by complex metabolic pathways, and it was thought that integrating a marker into a specific sugar molecule would inevitably disrupt its processing in the cell.

To overcome these problems, Bertozzi and her colleagues developed a chemical technique to tag sugars in a way that does not disrupt a cell’s biology and is highly specific. The technique involves "feeding" a cell a slightly modified sugar with a chemical group called an azide attached. Such sugars are not normally found on cells, but are processed by the cell’s metabolic pathways similarly to normal sugars and are incorporated into the cell-surface polysaccharides. The researchers can then tag the resulting "azido sugar" on the cell surface by treating it with a molecule called a phosphine to which any desired molecule, such as a probe for visualization, can be attached.

This reaction, called the Staudinger ligation, is "bio-orthogonal," said Bertozzi -- meaning that it does not affect the cell’s biology; and the components form a covalent bond with one another in a highly selective manner.

In the research reported in Nature, Bertozzi and her colleagues describe the first use of their cell-surface engineering technique in living animals. Previously, they had only applied it to cultured cells.

They injected the azido sugar into mice and used the Staudinger ligation to attach a phosphine molecule that carried a distinctive tag that would enable the scientists to detect whether attachment to the cell surface had occurred.

The researchers found that the azido sugar made its way into the mouse organs, was chemically processed similarly to the normal sugar, and appeared on the cell surface. They also found that the unnatural sugar caused no adverse physiological effects, even at the largest doses.

"We weren’t particularly surprised at the lack of toxicity because unnatural sugars are not known for high toxicity," said Bertozzi. "And at the highest dose, the amount of sugar we gave the animals was about that contained in a can of soft drink. Also, the azide component is already used in clinically approved drugs, such as AZT, which is taken at much higher dosages," said Bertozzi.

The scientists’ analyses revealed that the azido sugars were most concentrated in the heart, kidney and liver, with much lesser amounts in the brain and thymus. These findings indicate it may be able to apply this tagging technique to study the biology of other organs and to look for changes in organs that occur in diseases as cancer.

According to Bertozzi, advancing the technique to living animals will have important research and clinical implications. "From our point of view, one of the most exciting implications of this work is the prospect for imaging glycosylation in real time within living organisms," she said. "We hope to be able to witness changes in the pattern of glycosylation in a tissue as an animal develops through the embryonic stages, as a disease develops, or as tumors become metastatic. Until now, there has not been a technique to do such imaging."

Bertozzi and her colleagues are working on probes that could be attached to a phosphine, including those that can be used in magnetic resonance imaging, positron emission tomography and single photon emission computed tomography. They are also developing new bio-orthogonal ligation reactions with azides that will give them additional sugar-tagging techniques.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>