Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet success in targeting sugar molecules to cells in living animals

19.08.2004


New tool offers scientists great flexibility



Howard Hughes Medical Institute researchers have successfully targeted unnatural sugar molecules with chemically unique functional groups onto the surfaces of cells in living animals without altering the animals’ physiology.
The achievement is a significant advance in the promising new field of metabolic engineering because it provides a new tool with which researchers can label specific cells in whole animals so that they can differentiate one cell from another.

The researchers said the new approach to marking cell-surface sugars could lead to improved understanding of fundamental cellular processes where sugars are known to play an important role, such as in interaction with pathogens, and in mediating inflammation and disease. The research may also make it possible to target the delivery of chemical agents to specific cell types in living organisms more precisely.



Led by Howard Hughes Medical Institute Medical Institute investigator Carolyn R. Bertozziat the University of California, Berkeley, the researchers published their findings in the August 19, 2004, issue of the journal Nature.

"The method introduced by Bertozzi and colleagues is remarkable as a chemical process," wrote David A. Tirrell of the California Institute of Technology in an accompanying News and Views article in Nature. "The fact that specific chemical transformations can now be accomplished with spatial and temporal control in live animals is a major step forward for chemistry."

Glycosylation is the addition of carbohydrate (sugar) groups to a molecule. It has long been known that the glycosylation patterns of sugar molecules on cell surfaces can influence their interaction with other cells. "Glycobiologists have known that cancer cells, for example, exhibit changes in glycosylation patterns when compared with their normal healthy tissue counterparts," said Bertozzi. "And there are changes in glycosylation of blood vessels at sites of chronic inflammation that are characteristic of disease. There are even some reports in changes of glycosylation in the brains of people who have prion disease or Alzheimer’s disease," she said.

Additional studies suggest that glycosylation patterns on embryonic cells may serve as developmental markers because they change as the embryo grows. Thus, studying changes in glycosylation could improve understanding of embryonic development.

But studying the role of cell surface sugar chains, called polysaccharides, in disease is best done in the context of multiple cells, said Bertozzi. "All the interesting biology we want to study takes place at the level of whole organisms. This is a general feature of glycobiology; polysaccharides exert their function largely at the systems level," she said. This is in contrast to many proteins, such as enzymes, whose function can be studied by purifying and analyzing individual molecules.

Despite the promise of these studies, researchers faced a major challenge in finding the means to target sugars with specific markers for biological study to the surface of cells. Sugars are synthesized by complex metabolic pathways, and it was thought that integrating a marker into a specific sugar molecule would inevitably disrupt its processing in the cell.

To overcome these problems, Bertozzi and her colleagues developed a chemical technique to tag sugars in a way that does not disrupt a cell’s biology and is highly specific. The technique involves "feeding" a cell a slightly modified sugar with a chemical group called an azide attached. Such sugars are not normally found on cells, but are processed by the cell’s metabolic pathways similarly to normal sugars and are incorporated into the cell-surface polysaccharides. The researchers can then tag the resulting "azido sugar" on the cell surface by treating it with a molecule called a phosphine to which any desired molecule, such as a probe for visualization, can be attached.

This reaction, called the Staudinger ligation, is "bio-orthogonal," said Bertozzi -- meaning that it does not affect the cell’s biology; and the components form a covalent bond with one another in a highly selective manner.

In the research reported in Nature, Bertozzi and her colleagues describe the first use of their cell-surface engineering technique in living animals. Previously, they had only applied it to cultured cells.

They injected the azido sugar into mice and used the Staudinger ligation to attach a phosphine molecule that carried a distinctive tag that would enable the scientists to detect whether attachment to the cell surface had occurred.

The researchers found that the azido sugar made its way into the mouse organs, was chemically processed similarly to the normal sugar, and appeared on the cell surface. They also found that the unnatural sugar caused no adverse physiological effects, even at the largest doses.

"We weren’t particularly surprised at the lack of toxicity because unnatural sugars are not known for high toxicity," said Bertozzi. "And at the highest dose, the amount of sugar we gave the animals was about that contained in a can of soft drink. Also, the azide component is already used in clinically approved drugs, such as AZT, which is taken at much higher dosages," said Bertozzi.

The scientists’ analyses revealed that the azido sugars were most concentrated in the heart, kidney and liver, with much lesser amounts in the brain and thymus. These findings indicate it may be able to apply this tagging technique to study the biology of other organs and to look for changes in organs that occur in diseases as cancer.

According to Bertozzi, advancing the technique to living animals will have important research and clinical implications. "From our point of view, one of the most exciting implications of this work is the prospect for imaging glycosylation in real time within living organisms," she said. "We hope to be able to witness changes in the pattern of glycosylation in a tissue as an animal develops through the embryonic stages, as a disease develops, or as tumors become metastatic. Until now, there has not been a technique to do such imaging."

Bertozzi and her colleagues are working on probes that could be attached to a phosphine, including those that can be used in magnetic resonance imaging, positron emission tomography and single photon emission computed tomography. They are also developing new bio-orthogonal ligation reactions with azides that will give them additional sugar-tagging techniques.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>