Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights on causes of jet lag and shift work disorientation

19.08.2004


Timing is everything and our circadian clock, allows us (and almost every other organism on the planet), to predict the daily changes in our environment, such as light and temperature.



The University of Leicester is one of the main UK centres for clock and photoreceptor research, and new findings on the biology of the cryptochrome and light entrainment in the fruitfly (Drosophila melanogaster) by a team of Leicester biologists, led by Dr Ezio Rosato, have made a significant contribution to the field of circadian biology, as reported recently in the August edition of ’Nature Neuroscience’.

One of the most important functions of the circadian clock is its ability to react to and predict environmental cues, light being the most important, keeping the endogenous clock in phase with the external light-dark cycle (entrainment). Cryptochrome is a light-sensitive protein that is the key to entrainment.


Dr Rosato explained the importance of this research: “There are obvious advantages in having a clock. For instance we can start mobilising resources before they are actually needed, or we can temporally separate processes, which would be otherwise incompatible. As the clock evolved long before transcontinental travel and shift work were invented, jet lag and physiological dysfunctions are the price we pay for the unnatural 24-hour society.

“The implications of our frenetic life-style are much more profound than we generally think, as recent studies have indicated that the circadian clock (and clock genes) may be involved in diverse conditions such as tumour suppression, survival of animals with cardiomyopathy heart disease, left ventricular hypertrophy, diabetes, and cocaine sensitisation. It is therefore a very important factor in human and animal health and well-being.”

In fruitflies and mammals the same genes appear to play similar roles in determining how the 24-hour clock works. However, the ease of genetic analysis and the molecular tools available in the fruitfly Drosophila melanogaster, means that progress is particularly rapid with this organism.

The Leicester researchers are interested in a blue-light sensitive protein called CRYPTOCHROME (CRY), which employs light energy for signalling. The main function of CRY in the fly brain is to bring light information directly into the clock mechanism, resetting the time of the endogenous clock in phase with the external light-dark cycle.

The feature in ’Nature Neuroscience’ opens new insights on circadian light signalling and the biology of cryptochromes. The University of Leicester research team showed that by removing the terminal end of CRY (thus creating CRYD), they could generate flies that never ’experience’ night-time, as if they were living in a perpetual Arctic summer. They demonstrated this with a range of behavioural, molecular and cytological experiments.

Dr Rosato commented: “Clearly the CRYD molecule continuously conveys ‘lights on’ signals into the clock, even under constant darkness, drawing a new model of CRY action.

“During our experiments we also noticed that a particular group of neurons were especially affected by the continuous subjective light stimulation. This unprecedented observation allowed us to integrate several threads of circumstantial evidence from previous studies, and implicate this group of neurons as main players in the entrainment of the Drosophila clock.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>