Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights on causes of jet lag and shift work disorientation

19.08.2004


Timing is everything and our circadian clock, allows us (and almost every other organism on the planet), to predict the daily changes in our environment, such as light and temperature.



The University of Leicester is one of the main UK centres for clock and photoreceptor research, and new findings on the biology of the cryptochrome and light entrainment in the fruitfly (Drosophila melanogaster) by a team of Leicester biologists, led by Dr Ezio Rosato, have made a significant contribution to the field of circadian biology, as reported recently in the August edition of ’Nature Neuroscience’.

One of the most important functions of the circadian clock is its ability to react to and predict environmental cues, light being the most important, keeping the endogenous clock in phase with the external light-dark cycle (entrainment). Cryptochrome is a light-sensitive protein that is the key to entrainment.


Dr Rosato explained the importance of this research: “There are obvious advantages in having a clock. For instance we can start mobilising resources before they are actually needed, or we can temporally separate processes, which would be otherwise incompatible. As the clock evolved long before transcontinental travel and shift work were invented, jet lag and physiological dysfunctions are the price we pay for the unnatural 24-hour society.

“The implications of our frenetic life-style are much more profound than we generally think, as recent studies have indicated that the circadian clock (and clock genes) may be involved in diverse conditions such as tumour suppression, survival of animals with cardiomyopathy heart disease, left ventricular hypertrophy, diabetes, and cocaine sensitisation. It is therefore a very important factor in human and animal health and well-being.”

In fruitflies and mammals the same genes appear to play similar roles in determining how the 24-hour clock works. However, the ease of genetic analysis and the molecular tools available in the fruitfly Drosophila melanogaster, means that progress is particularly rapid with this organism.

The Leicester researchers are interested in a blue-light sensitive protein called CRYPTOCHROME (CRY), which employs light energy for signalling. The main function of CRY in the fly brain is to bring light information directly into the clock mechanism, resetting the time of the endogenous clock in phase with the external light-dark cycle.

The feature in ’Nature Neuroscience’ opens new insights on circadian light signalling and the biology of cryptochromes. The University of Leicester research team showed that by removing the terminal end of CRY (thus creating CRYD), they could generate flies that never ’experience’ night-time, as if they were living in a perpetual Arctic summer. They demonstrated this with a range of behavioural, molecular and cytological experiments.

Dr Rosato commented: “Clearly the CRYD molecule continuously conveys ‘lights on’ signals into the clock, even under constant darkness, drawing a new model of CRY action.

“During our experiments we also noticed that a particular group of neurons were especially affected by the continuous subjective light stimulation. This unprecedented observation allowed us to integrate several threads of circumstantial evidence from previous studies, and implicate this group of neurons as main players in the entrainment of the Drosophila clock.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>