Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venom reveals clues about heart drug

17.08.2004


With the help of snake venom and sophisticated laboratory testing, scientists believe they’ve uncovered the reason why a group of new heart medications were doing some patients more harm than good. Researchers from Wake Forest University Baptist Medical Center and colleagues report the findings in the current on-line issue of The Journal of Molecular Biology.



"Our findings suggest that drug developers should take a different approach," said Roy Hantgan, Ph.D., principal investigator, "and we’ve also developed a way to test drugs for these harmful effects before they are given to patients."

Hantgan, an associate professor of biochemistry, and colleagues studied a group of drugs called integrin antagonists that are designed to prevent blood clots from forming and causing a heart attack during angioplasty, a procedure that uses a balloon-like device to clear narrowed heart arteries.


Intravenous forms of the drug, including ReoPro®, proved very effective at minimizing complications of angioplasty in most patients. Drug manufacturers then worked to make oral forms, so the benefits could be extended after patients left the hospital. But research trials for three different oral drugs were stopped after early results showed a 33 percent increase in patient deaths – with no clear cause. Researchers were unsure what caused the disparity – the intravenous drug was beneficial, while the oral form could be deadly.

Integrin antagonists are designed to block a natural clotting mechanism. They target a protein on blood platelets called an integrin. Integrins, which have been described as the "glue of life," are essential for clotting. The process begins when integrin receptors combine with fibrinogen, a protein in the fluid part of blood. The platelets then congregate at the site of an injury to stem blood loss.

During angioplasty, however, this clotting mechanism can result in a heart attack. When a piece of plaque buildup breaks off in an artery, or when the angioplasty balloon crushes plaque buildup, integrin receptors are activated, which can cause a blood clot to block the artery. Integrin antagonists were designed to prevent this response – the drugs combine with the integrin receptors so that fibrinogen isn’t able to.

In trying to solve the mystery of why one type of integrin antagonists works better than another, Hantgan and colleagues decided to enlist the help of a protein found in snake venom that binds to the integrin and blocks fibrinogen. This causes rapid bleeding in the snake’s prey.

"We wanted to look at a natural protein to see how the synthetic drugs might work," Hantgan said.

Using the electron microscope and laboratory tests that measure the size and shape of very small proteins, the team discovered that the snake venom protein blocks the receptors, just as the drugs do. But after the protein is withdrawn, some of the receptors remain activated, creating the potential for clotting.

"Likewise, the drugs are effective at blocking the receptor, but some of the newer drugs also cause the receptor to remain activated," said Hantgan. "The beneficial effects of these drugs seem to be inseparable from their side effects."

The team tested several integrin antagonists and found that all, including the newer, oral medications, had the response in varying degrees. Hantgan speculated that dips in patients’ drug levels that can occur with oral medications could leave them especially vulnerable to the integrin-activating effects.

"This result suggests that no matter how good a drug you develop, you’re going to have this problem in some patients," said Hantgan. "We believe that drugs that are designed to bind to integrin receptors inside the platelet, rather than on the surface, might have a better chance of working."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>