Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venom reveals clues about heart drug

17.08.2004


With the help of snake venom and sophisticated laboratory testing, scientists believe they’ve uncovered the reason why a group of new heart medications were doing some patients more harm than good. Researchers from Wake Forest University Baptist Medical Center and colleagues report the findings in the current on-line issue of The Journal of Molecular Biology.



"Our findings suggest that drug developers should take a different approach," said Roy Hantgan, Ph.D., principal investigator, "and we’ve also developed a way to test drugs for these harmful effects before they are given to patients."

Hantgan, an associate professor of biochemistry, and colleagues studied a group of drugs called integrin antagonists that are designed to prevent blood clots from forming and causing a heart attack during angioplasty, a procedure that uses a balloon-like device to clear narrowed heart arteries.


Intravenous forms of the drug, including ReoPro®, proved very effective at minimizing complications of angioplasty in most patients. Drug manufacturers then worked to make oral forms, so the benefits could be extended after patients left the hospital. But research trials for three different oral drugs were stopped after early results showed a 33 percent increase in patient deaths – with no clear cause. Researchers were unsure what caused the disparity – the intravenous drug was beneficial, while the oral form could be deadly.

Integrin antagonists are designed to block a natural clotting mechanism. They target a protein on blood platelets called an integrin. Integrins, which have been described as the "glue of life," are essential for clotting. The process begins when integrin receptors combine with fibrinogen, a protein in the fluid part of blood. The platelets then congregate at the site of an injury to stem blood loss.

During angioplasty, however, this clotting mechanism can result in a heart attack. When a piece of plaque buildup breaks off in an artery, or when the angioplasty balloon crushes plaque buildup, integrin receptors are activated, which can cause a blood clot to block the artery. Integrin antagonists were designed to prevent this response – the drugs combine with the integrin receptors so that fibrinogen isn’t able to.

In trying to solve the mystery of why one type of integrin antagonists works better than another, Hantgan and colleagues decided to enlist the help of a protein found in snake venom that binds to the integrin and blocks fibrinogen. This causes rapid bleeding in the snake’s prey.

"We wanted to look at a natural protein to see how the synthetic drugs might work," Hantgan said.

Using the electron microscope and laboratory tests that measure the size and shape of very small proteins, the team discovered that the snake venom protein blocks the receptors, just as the drugs do. But after the protein is withdrawn, some of the receptors remain activated, creating the potential for clotting.

"Likewise, the drugs are effective at blocking the receptor, but some of the newer drugs also cause the receptor to remain activated," said Hantgan. "The beneficial effects of these drugs seem to be inseparable from their side effects."

The team tested several integrin antagonists and found that all, including the newer, oral medications, had the response in varying degrees. Hantgan speculated that dips in patients’ drug levels that can occur with oral medications could leave them especially vulnerable to the integrin-activating effects.

"This result suggests that no matter how good a drug you develop, you’re going to have this problem in some patients," said Hantgan. "We believe that drugs that are designed to bind to integrin receptors inside the platelet, rather than on the surface, might have a better chance of working."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>