Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosome ‘Looping’ Of Imprinted Genes May Hold Key To Growth Disorder

17.08.2004


Babraham Institute scientists have identified chromosome ‘loops’ which have implications for healthy growth of babies in the womb. Disruption of these loops can lead to Beckwith-Wiedemann Syndrome (BWS) – over-large babies with various tumours – which affects 1 in 13,000 births. The risk of developing the syndrome is increased four-fold in babies born following IVF treatment.



Confirmation of the existence of the loops, described in an article published in Nature Genetics, was made by Dr Adele Murrell and colleagues, working with Dr Wolf Reik at the Babraham Institute. Scientists had previously speculated that these loops, or something similar, exist, but no-one had evidence to prove this was the case.

Dr Reik’s group studies imprinted genes, which are genes in mammals that are only expressed from one of the parental chromosomes. These genes have important roles in regulating the growth of the baby in the womb and its adaptations to life outside the womb. Many of them occur in clusters, and share elements by which their expression can be increased (enhancers) or decreased (silencers).


These elements of the chromosome may be thought of as beads on a necklace. They are distant from each other along the string (up to 10% of the length of the string), but it can be coiled to bring them into contact. The group has identified a looped area of a chromosome, which enables direct physical contact between two imprinted genes, allowing one or the other to be exclusively expressed.

This study confirms the existing theories of how these relatively remote elements are arranged in loops to allow their effects to be shared. Dr Reik comments “though the findings don’t have a direct bearing on diagnosis, our work over the years has led to much better prediction as to which groups of children with BWS are at higher risk of developing certain symptoms”.

Emma Southern | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>