Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Visualise Cellular Handmaiden That Restores Shape To Proteins


A gigantic protein complex responsible for looking after bent out of shape proteins has been visualised by scientists working in Japan and the UK.

The structure of the chaperonin complex of the bacteria Thermus thermophilus reveals clues about how the important molecule may do its job of folding new or damaged proteins within cells. Led by Professor So Iwata of Imperial College London, the team of scientists announce their findings in this month’s edition of the journal Structure (August 2004).

The complex comprises three separate parts - two identical ’cage’ units lashed back to back, and a ’cap’ unit that sits atop the cage, acting as a stopper. The cage contains the unwound, or denatured, protein, while the chaperonin goes about refolding its shape using the cellular energy source, ATP.

The structure of the chaperonin complex is one of the largest and most difficult solved by scientists. Each unit of the cage or cap is made up of seven separate polypeptide chains. "It’s huge," said Professor Iwata. "The cavity can accommodate even very large proteins inside. It makes the perfect environment for the protein to fold."

It is the second structure of a chaperonin complex to be reported by scientists, and is visualised at a resolution of 2.8 Angstroms. The first was published in 1997 by the group of the late Professor Paul Sigler at Yale University, USA.

Unlike the first structure, taken from the chaperonin of gut bacterium Escherichia coli, the Thermus thermophilus structure is a more natural structure revealing the irregular oval interior of the cage’s subunits.

Thermus thermophilus is a highly thermophilic bacteria, first found living in deep-sea hot vents. It contains proteins thought to be very similar to those found in the energy powerhouses of plant and animal cells, the mitochondria.

Immediately, the largest users of this new knowledge are biochemists working on the protein and bioinformaticians, searching for similar molecules in other species. Human mitochondria likely use the same type of chaperonin to fold proteins says Professor Iwata. In time their structure may be used in the development of new drugs.

The team believe their structure leads them to an explanation of how the molecule works.

Properly folded proteins tuck away the elements that don’t mingle well with water - a property known as hydrophobicity - inside their structure. Denatured proteins with their mis-organised shape allow normally hidden elements to display on the outside, making them appear hydrophobic.

The chaperonin cap recognises the hydrophobicity and ’kicks’ the out of shape protein in to the cage for some protein folding therapy. The folding changes in the cavity are driven by the cell’s energy source, ATP. It takes just 10 seconds for a protein to properly fold in the cavity.

The scientists’ next goal is to capture these cellular handmaidens in the act of folding strings of denatured protein back together again. They already have clues as to the sorts of proteins that might be fixed by the chaperonin complex - during their work to crystallise the protein structure they identified 28 separate proteins inside the cage. "We’d like to be the first to really know what happens, when the protein is enclosed and caught in the act," says Professor Iwata.

In molecular units known as Daltons, the structure of the native chaperonin complex weighs 700 kiloDaltons. It is so big that details of its full structure had to be deposited in two parts to the freely available structure database, Protein Data Bank. It has more than six digits of atomic coordinates, or over a million atoms in the structure mapped and plotted in 3D space.

Professor Iwata is well known for solving the structure of proteins embedded in the membrane of cells, such as the crucial photosynthesis enzyme Photosystem II, published last year in Science. The crystals of chaperonin complex were grown and prepared in Iwata’s lab, and after X-ray analysis at the European synchrotron facility, all authors collaboratively solved the structure.

This work was funded by BBSRC and ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency.

Tom Miller | alfa
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>