Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last of known genes identified in complex obesity syndrome

16.08.2004


By comparing three different species’ genomes and adding some good old-fashioned genetic analysis, scientists have uncovered the identity of the last of eight genes known to contribute to Bardet-Biedl syndrome, a rare disorder characterized by a combination of some otherwise common problems, including obesity, learning difficulties, diabetes and asthma.



The identification of the BBS3 gene ends the search for primary BBS-causing genes in families studied for years by a team of scientists from the United States, Canada and the United Kingdom. However, the scientists are still hunting for other, less obvious genetic influences in these families.

Writing in the Aug. 15 advance online section of Nature Genetics, the international team reports that BBS3 is actually a gene formerly known as ARL6. Importantly, ARL6 is the first BBS culprit to belong to a family of genes and proteins with a known function, opening the door to figuring out what’s really happening in people with the condition.


"We can use BBS3/ARL6 and its known function -- binding the molecule GTP -- as a great place to start to unravel the details of the other BBS proteins," says Nicholas Katsanis, Ph.D., assistant professor in Johns Hopkins’ McKusick-Nathans Institute of Genetic Medicine. "And understanding BBS may provide important insight for understanding obesity, learning difficulties and other BBS-related problems that also appear in the general population."

Family studies had managed to link BBS3 to a region of chromosome 3, but getting to the gene had proven challenging. Now, by taking advantage of their recent discovery that faulty cellular structures called cilia are behind the problems seen in BBS patients, the researchers were able to zero in on the disease-causing gene.

Cilia are found on many different types of cells and can either act like antennae, sensing important signals, or help push fluid or mucous around, such as in the lungs. Some BBS-related mutations seem to disrupt the scaffolding upon which cilia are built, but others may cause ciliary dysfunction in other ways, perhaps preventing or misdirecting the shuttling of materials along the cilia.

By searching a database of cilia-related genes compiled by comparing three species’ genomes -- a bacterium, a plant, and a human [see May 15, 2004, news release] -- the researchers found three possibilities in the right region of chromosome 3. Next, they determined the genetic sequences of those three genes in four families with BBS. One of the genes, ARL6, had a different, critical mutation in each of the families, the researchers found.

"ARL6 is the first member of its larger gene family to be tied to any disease," says Katsanis. "While not much is known about ARL6 specifically, we know quite a bit about its relatives, so we know which regions of ARL6 are crucial for the protein’s correct function. The mutations in these families wouldn’t let the protein work properly."

ARL6 is a member of a class of proteins that bind GTP, or guanosine triphosphate -- a class given the obvious title of GTP-binding proteins. GTP-binding is a critical step in a wide variety of signaling "cascades" that pass along messages and instructions inside cells -- such as to open or close the cell’s entry points or to trigger relocation of "freight" within the cell.

"That this type of molecule could cause BBS is particularly intriguing," says Katsanis.

In additional experiments using the worm C. elegans, the researchers proved that ARL6 normally functions only in cilia, suggesting it might relay specific signals in that part of the cell. The next step is to figure out exactly what those signals might be.

"We don’t know what its message is, but because we know that it binds GTP, we have some ideas of where to start looking," says Katsanis.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>