Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last of known genes identified in complex obesity syndrome

16.08.2004


By comparing three different species’ genomes and adding some good old-fashioned genetic analysis, scientists have uncovered the identity of the last of eight genes known to contribute to Bardet-Biedl syndrome, a rare disorder characterized by a combination of some otherwise common problems, including obesity, learning difficulties, diabetes and asthma.



The identification of the BBS3 gene ends the search for primary BBS-causing genes in families studied for years by a team of scientists from the United States, Canada and the United Kingdom. However, the scientists are still hunting for other, less obvious genetic influences in these families.

Writing in the Aug. 15 advance online section of Nature Genetics, the international team reports that BBS3 is actually a gene formerly known as ARL6. Importantly, ARL6 is the first BBS culprit to belong to a family of genes and proteins with a known function, opening the door to figuring out what’s really happening in people with the condition.


"We can use BBS3/ARL6 and its known function -- binding the molecule GTP -- as a great place to start to unravel the details of the other BBS proteins," says Nicholas Katsanis, Ph.D., assistant professor in Johns Hopkins’ McKusick-Nathans Institute of Genetic Medicine. "And understanding BBS may provide important insight for understanding obesity, learning difficulties and other BBS-related problems that also appear in the general population."

Family studies had managed to link BBS3 to a region of chromosome 3, but getting to the gene had proven challenging. Now, by taking advantage of their recent discovery that faulty cellular structures called cilia are behind the problems seen in BBS patients, the researchers were able to zero in on the disease-causing gene.

Cilia are found on many different types of cells and can either act like antennae, sensing important signals, or help push fluid or mucous around, such as in the lungs. Some BBS-related mutations seem to disrupt the scaffolding upon which cilia are built, but others may cause ciliary dysfunction in other ways, perhaps preventing or misdirecting the shuttling of materials along the cilia.

By searching a database of cilia-related genes compiled by comparing three species’ genomes -- a bacterium, a plant, and a human [see May 15, 2004, news release] -- the researchers found three possibilities in the right region of chromosome 3. Next, they determined the genetic sequences of those three genes in four families with BBS. One of the genes, ARL6, had a different, critical mutation in each of the families, the researchers found.

"ARL6 is the first member of its larger gene family to be tied to any disease," says Katsanis. "While not much is known about ARL6 specifically, we know quite a bit about its relatives, so we know which regions of ARL6 are crucial for the protein’s correct function. The mutations in these families wouldn’t let the protein work properly."

ARL6 is a member of a class of proteins that bind GTP, or guanosine triphosphate -- a class given the obvious title of GTP-binding proteins. GTP-binding is a critical step in a wide variety of signaling "cascades" that pass along messages and instructions inside cells -- such as to open or close the cell’s entry points or to trigger relocation of "freight" within the cell.

"That this type of molecule could cause BBS is particularly intriguing," says Katsanis.

In additional experiments using the worm C. elegans, the researchers proved that ARL6 normally functions only in cilia, suggesting it might relay specific signals in that part of the cell. The next step is to figure out exactly what those signals might be.

"We don’t know what its message is, but because we know that it binds GTP, we have some ideas of where to start looking," says Katsanis.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>