Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blood proteins to detect ovarian cancer


Johns Hopkins Kimmel Cancer Center researchers have designed a blood test to detect ovarian cancer using three proteins found in common in the blood of women with the disease. Their preliminary studies with the new test suggest a molecular signature exclusive to this deadly cancer, known for its ability to remain undetected and spread quickly.

The Hopkins test, described in the August 15 issue of Cancer Research, identifies the proteins as a truncated form of transthyretin, a fragment of ITIH4 and apolipoprotein A1, teased out with a rigorous evaluation of protein patterns present in blood samples from ovarian cancer patients at several U.S. and international hospitals. Other research groups are evaluating ovarian cancer blood tests that use protein profiles consisting of tens of thousands of unidentified molecules.

"By identifying a select group of biomarkers specific to ovarian cancer, we not only know the proteins we are dealing with, but we can trace them back to alterations in the genetic code of ovarian cancer cells," says Daniel W. Chan, Ph.D., professor and director of the Biomarker Discovery Center at Johns Hopkins. "We are focusing on the markers for which we have good biological reasoning behind their selection, and hope to expand the panel of markers to catch as many variations in ovarian cancer proteins as possible."

This research was funded by the National Cancer Institute and Ciphergen Biosystems, which has licensed the test.

Chan and his co-workers emphasize that the test will not be commercially available for screening the population at large until completion of further validation studies in larger groups of patients. And even then, Chan notes, it is never going to be possible for a blood test to correctly diagnose 100 percent of cancerous tumors 100 percent of the time. "The goal is to come as close as possible to that by using this test in combination with other available diagnostic tools." They believe, however, that with some refinements it may already have use for helping determine whether a pelvic mass is ovarian cancer.

In a systematic search to find the most promising blood proteins for their test, the Hopkins scientists conducted a multicenter study and screened a total of 195 blood samples from two groups of ovarian cancer patients, healthy people, and patients with benign ovarian tumors. A sophisticated bioinformatics program was used to select proteins present at unusually high or low levels in ovarian cancer samples as compared with normal or benign. Samples in the two groups were analyzed separately to account for differences in patient populations and sample collection techniques. Then, researchers compared protein profile results in these two groups and ultimately narrowed the search for potential marker candidates to the three proteins, one of which (ITIH4) is commonly found at high levels in ovarian cancer and the other two at lower levels.

"Typically, only half of early-stage ovarian cancer patients have high blood levels of a standard marker called CA125," says Zhen Zhang, Ph.D., associate professor of pathology at Johns Hopkins. "But combining CA125 with our new markers may improve early detection capabilities."

The new proteins were screened against a separate collection of blood samples from patients with normal and cancerous tissues. Of 23 patients with early-stage ovarian cancer, the three protein markers plus CA125 correctly identified cancer 74 percent of the time (17 of 23) as compared to 65 percent (15 of 23) with CA125 alone. Although the sample size was too small for this difference to be statistically significant, the scientists conducted further studies lowering the cutoff value for CA125 to below current standards. The new test plus CA125 as well as CA125 alone detected 83 percent (19 of 23) of the cancers. In addition, the new test plus CA125 correctly identified healthy samples 94 percent of the time (59 of 63) as compared to 52 percent (33 of 63) for CA125 alone.

To verify that the candidate markers were specific to ovarian cancer, the scientists also compared results of the protein profiles with a separate group of blood samples from 142 Johns Hopkins ovarian, breast, colon, prostate cancer patients and healthy people. Protein markers from Hopkins’ ovarian cancer samples matched those from the other two groups of blood samples. Breast, colon and prostate cancer samples exhibited levels of the three proteins closer to those of normal patients, indicating that the markers are exclusive to ovarian cancer.

The scientists will conduct further studies to map all three proteins to the genetic pathways linked to ovarian cancer development and combine the blood test with radiologic tools such as ultrasound. They also will search for more proteins to add to the current panel of markers.

Additional research participants included Robert Bast Jr. and Yinhua Yu from the M.D. Anderson Cancer Center; Jinong Li, Lori Sokoll, Alex Rai, Jason Rosenzweig, Bonnie Cameron, and Young Wang from Johns Hopkins; Andrew Berchuck from Duke University Medical Center; Carolien van Haaften-Day and Neville Hacker from The Royal Hospital for Women, Australia; Henk de Bruij and Ate van der Zee from University Hospital Groningen, the Netherlands; Ian Jacobs from Bart’s and The London, Queen Mary’s School of Medicine, United Kingdom, and Eric Fung from Ciphergen Biosystems.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>