Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a molecular timetable by analysis of circadian gene expression

16.08.2004


A look inside a wristwatch reveals that timekeeping is a complex affair, involving the coordination of mechanical parts providing the impulses and feedback needed to achieve precisely recurring movement. Biological clocks are equally complex, regulated by a network of genes and transcriptional factors that interact to stabilize the rhythms of numerous physiological systems. Unlike the wristwatch, however, there is no visible readout or display showing an individual’s body time, a lack which has stood as one of the major barriers to realizing the promise of chronotherapy, which seeks to deliver drug treatments at optimal body times.



A new study by Hiroki R. Ueda (Laboratory for Systems Biology, RIKEN Center for Developmental Biology; Kobe, Japan) and colleagues has provided proof of principle that just such a display of individual body time may one day possible. The report, published in the August 3 issue of the Proceedings of the National Academy of Sciences, describes the analysis of the expression of more than 100 time-indicating genes in the mouse. The results of this genome-wide study enabled the authors to develop a "molecular timetable" that provides an accurate representation of the animal’s body time based on the sampling of gene expression levels at a single point in time.

Many genes exhibit variable expression cycles roughly over the course of a 24-hour day, a phenomenon known as circadian rhythmicity. In their study, Ueda et al. first identified genes that are expressed in high amplitude circadian patterns. Such genes demonstrate cyclical expression irrespective of variations in exposure to light, maintaining their amplitude and periodicity even when the animals are kept in constant darkness. The team identified 168 genes fulfilling these criteria in samples from mouse liver, and calculated their peak expression times in terms of both external time and the animal’s subjective inner clock. They found that the genes could be organized into a kind of daily schedule by their times of peak expression – some were expressed most highly at daybreak, some at dusk, some at other time-points throughout the cycle of a single day.


By plotting the expression levels of the entire set of time-indicating genes against a 24-hour curve, Ueda and colleagues found that it is possible to determine body time with a high degree of accuracy. To test the robustness of this molecular time measurement system, they measured the expression levels of the 168 genes at the lights-out phase in animals kept in conditions of alternating 12-hour periods of light and dark. This phase is presumed to be a hotbed of circadian regulatory activity, as the mouse’s internal rhythm runs in cycles that are naturally shorter than 24 hours, and darkness serves as a stimulus for resetting the circadian clock (such stimuli are referred to as Zeitgeber mechanisms, from the German word meaning "time-giver"). Their analysis of expression levels at this critical Zeitgeber hour 12 produced estimated body times to an accuracy of about 1 hour in all animals studied, indicating that the molecular timetable provided is strongly resistant to environmental noise (in this case, variation in exposure to light).

They next tested the system in mice with a homozygous mutation in the gene Clock, whose loss of function is known to perturb the natural circadian rhythm. They found rhythm disruptions in the expression profiles of all of the Clock/Clock mice, suggesting that the molecular timetable approach may also have applications in the diagnosis of circadian rhythm disorders.

This new approach to the horology of the body has been validated in mice of varying genetic backgrounds and in principle can be applied to any organism exhibiting biological clock activity, a range that spans the living world from bacteria to plants to humans. And indeed a test of the method in wild type and Clock-mutant fruit flies gave similar results to those in the mouse studies.

The development by Ueda and colleagues of a universally-applicable, specific, sensitive and accurate method capable of both detecting individual body time and of diagnosing circadian disorders represents a major step toward the fulfillment of the longstanding dream of scientists and physicians: to put a readable face on the body’s clock. Its application in medical treatment may one day allow doctors to tailor drug administration to a patient’s body time, which promises to optimize efficacy and reduce adverse effects.

Doug Sipp | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>