Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a molecular timetable by analysis of circadian gene expression

16.08.2004


A look inside a wristwatch reveals that timekeeping is a complex affair, involving the coordination of mechanical parts providing the impulses and feedback needed to achieve precisely recurring movement. Biological clocks are equally complex, regulated by a network of genes and transcriptional factors that interact to stabilize the rhythms of numerous physiological systems. Unlike the wristwatch, however, there is no visible readout or display showing an individual’s body time, a lack which has stood as one of the major barriers to realizing the promise of chronotherapy, which seeks to deliver drug treatments at optimal body times.



A new study by Hiroki R. Ueda (Laboratory for Systems Biology, RIKEN Center for Developmental Biology; Kobe, Japan) and colleagues has provided proof of principle that just such a display of individual body time may one day possible. The report, published in the August 3 issue of the Proceedings of the National Academy of Sciences, describes the analysis of the expression of more than 100 time-indicating genes in the mouse. The results of this genome-wide study enabled the authors to develop a "molecular timetable" that provides an accurate representation of the animal’s body time based on the sampling of gene expression levels at a single point in time.

Many genes exhibit variable expression cycles roughly over the course of a 24-hour day, a phenomenon known as circadian rhythmicity. In their study, Ueda et al. first identified genes that are expressed in high amplitude circadian patterns. Such genes demonstrate cyclical expression irrespective of variations in exposure to light, maintaining their amplitude and periodicity even when the animals are kept in constant darkness. The team identified 168 genes fulfilling these criteria in samples from mouse liver, and calculated their peak expression times in terms of both external time and the animal’s subjective inner clock. They found that the genes could be organized into a kind of daily schedule by their times of peak expression – some were expressed most highly at daybreak, some at dusk, some at other time-points throughout the cycle of a single day.


By plotting the expression levels of the entire set of time-indicating genes against a 24-hour curve, Ueda and colleagues found that it is possible to determine body time with a high degree of accuracy. To test the robustness of this molecular time measurement system, they measured the expression levels of the 168 genes at the lights-out phase in animals kept in conditions of alternating 12-hour periods of light and dark. This phase is presumed to be a hotbed of circadian regulatory activity, as the mouse’s internal rhythm runs in cycles that are naturally shorter than 24 hours, and darkness serves as a stimulus for resetting the circadian clock (such stimuli are referred to as Zeitgeber mechanisms, from the German word meaning "time-giver"). Their analysis of expression levels at this critical Zeitgeber hour 12 produced estimated body times to an accuracy of about 1 hour in all animals studied, indicating that the molecular timetable provided is strongly resistant to environmental noise (in this case, variation in exposure to light).

They next tested the system in mice with a homozygous mutation in the gene Clock, whose loss of function is known to perturb the natural circadian rhythm. They found rhythm disruptions in the expression profiles of all of the Clock/Clock mice, suggesting that the molecular timetable approach may also have applications in the diagnosis of circadian rhythm disorders.

This new approach to the horology of the body has been validated in mice of varying genetic backgrounds and in principle can be applied to any organism exhibiting biological clock activity, a range that spans the living world from bacteria to plants to humans. And indeed a test of the method in wild type and Clock-mutant fruit flies gave similar results to those in the mouse studies.

The development by Ueda and colleagues of a universally-applicable, specific, sensitive and accurate method capable of both detecting individual body time and of diagnosing circadian disorders represents a major step toward the fulfillment of the longstanding dream of scientists and physicians: to put a readable face on the body’s clock. Its application in medical treatment may one day allow doctors to tailor drug administration to a patient’s body time, which promises to optimize efficacy and reduce adverse effects.

Doug Sipp | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>