Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Could Form Building Blocks for Nanomachines

13.08.2004


Microscopic scaffolding to house the tiny components of nanotech devices could be built from RNA, the same substance that shuttles messages around a cell’s nucleus, reports a Purdue University research group.



By encouraging ribonucleic acid (RNA) molecules to self-assemble into 3-D shapes resembling spirals, triangles, rods and hairpins, the group has found what could be a method of constructing lattices on which to build complex microscopic machines. From such RNA blocks, the group has already constructed arrays that are several micrometers in diameter - still microscopically small, but exciting because manipulating controllable structures of this size from nanoparticles is one of nanotechnology’s main goals.

"Our work shows that we can control the construction of three-dimensional arrays made from RNA blocks of different shapes and sizes," said Peixuan Guo, who is a professor of molecular virology in Purdue’s School of Veterinary Medicine. "With further research, RNA could form the superstructures for tomorrow’s nanomachines."


The paper, which Guo co-authored with Dan Shu, Wulf-Dieter Moll, Zhaoxiang Deng and Chengde Mao, all of Purdue, appears in the August issue of the journal Nano Letters.

Nanotechnologists, like those in Guo’s group, hope to build microscopic devices with sizes that are best measured in nanometers - or billionths of a meter. Because nature routinely creates nano-sized structures for living things, many researchers are turning to biology for their inspiration and construction tools.

"Biology builds beautiful nanoscale structures, and we’d like to borrow some of them for nanotechnology," Guo said. "The trouble is, when we’re working with such tiny blocks, we are short of tiny steam shovels to push them around. So we need to design and construct materials that can assemble themselves."

Organisms are built in large part of three main types of building blocks: proteins, DNA and RNA. Of the three, perhaps least investigated and understood is RNA, a molecular cousin to the DNA that stores genetic blueprints within our cells’ nuclei. RNA typically receives less attention than other substances from many nanotechnologists, but Guo said the molecule has distinct advantages.

"RNA combines the advantages of both DNA and proteins and puts them at the nanotechnologist’s disposal," Guo said. "It forms versatile structures that are also easy to produce, manipulate and engineer."

Since his discovery of a novel RNA that plays a vital role in a microscopic "motor" used by the bacterial virus phi29 (see related story), Guo has continued to study the structure of this RNA molecule for years. It formed the "pistons" of a tiny motor his lab created several years ago, and members of the team collaborated previously to build dimers and trimers - molecules formed from two and three RNA strands, respectively. Guo said the methods the team used in the past made their recent, more comprehensive construction work possible.

"By designing sets of matching RNA molecules, we can program RNA building blocks to bind to each other in precisely defined ways," he said. "We can get them to form the nano-shapes we want."

From the small shapes that RNA can form - hoops, triangles and so forth - larger, more elaborate structures can in turn be constructed, such as rods gathered into spindly, many-pronged bundles. These structures could theoretically form the scaffolding on which other components, such as nano-sized transistors, wires or sensors, could be mounted.

"Because these RNA structures can be engineered to put themselves together, they could be useful to industrial and medical specialists, who will appreciate their ease of engineering and handling," said Dieter Moll, a postdoctoral researcher in Guo’s lab. "Self-assembly means cost-effective."

Moll, while bullish on RNA’s prospects, cautioned that there was more work to be done before nanoscale models could be built at will.

"One of our main concerns right now is that, over time, RNA tends to degrade biologically," he said. "We are already working on ways to make it more resistant to degradation so that it can form long-lasting structures."

Guo said that though applications might be many years away, it would be most productive to take the long-term approach.

"We have not built actual scaffolds yet, just 3-D arrays," he said. "But we have built them from engineered biological molecules, and that could help us bridge the gap between the living and the nonliving world. If nanotech devices can eventually be built from both organic and inorganic materials, it would ease their use in both medical and industrial settings, which could multiply their usefulness considerably."

This research was sponsored in part by the National Science Foundation, the National Institutes of Health and the Department of Defense. Moll’s postdoctoral research is funded by the Austrian Science Fund’s Erwin Schroedinger Fellowship.

Guo is affiliated with Purdue’s Cancer Center and Birck Nanotechnology Center. The Cancer Center, one of just eight National Cancer Institute-designated basic research facilities in the United States, attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer.

The Birck Nanotechnology Center is located in Purdue’s new Discovery Park, located on the southwestern edge of campus. Programs include undergraduate teaching, graduate research and technology transfer initiatives with industry partners. Scientists in biology, chemistry, physics and several engineering disciplines participate in the research.

| newswise
Further information:
http://www.purdue.edu
http://discoverypark.e-enterprise.purdue.edu/wps/portal/.cmd/cs/.ce/155/.s/4270/_s.155/4270

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>