Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Could Form Building Blocks for Nanomachines

13.08.2004


Microscopic scaffolding to house the tiny components of nanotech devices could be built from RNA, the same substance that shuttles messages around a cell’s nucleus, reports a Purdue University research group.



By encouraging ribonucleic acid (RNA) molecules to self-assemble into 3-D shapes resembling spirals, triangles, rods and hairpins, the group has found what could be a method of constructing lattices on which to build complex microscopic machines. From such RNA blocks, the group has already constructed arrays that are several micrometers in diameter - still microscopically small, but exciting because manipulating controllable structures of this size from nanoparticles is one of nanotechnology’s main goals.

"Our work shows that we can control the construction of three-dimensional arrays made from RNA blocks of different shapes and sizes," said Peixuan Guo, who is a professor of molecular virology in Purdue’s School of Veterinary Medicine. "With further research, RNA could form the superstructures for tomorrow’s nanomachines."


The paper, which Guo co-authored with Dan Shu, Wulf-Dieter Moll, Zhaoxiang Deng and Chengde Mao, all of Purdue, appears in the August issue of the journal Nano Letters.

Nanotechnologists, like those in Guo’s group, hope to build microscopic devices with sizes that are best measured in nanometers - or billionths of a meter. Because nature routinely creates nano-sized structures for living things, many researchers are turning to biology for their inspiration and construction tools.

"Biology builds beautiful nanoscale structures, and we’d like to borrow some of them for nanotechnology," Guo said. "The trouble is, when we’re working with such tiny blocks, we are short of tiny steam shovels to push them around. So we need to design and construct materials that can assemble themselves."

Organisms are built in large part of three main types of building blocks: proteins, DNA and RNA. Of the three, perhaps least investigated and understood is RNA, a molecular cousin to the DNA that stores genetic blueprints within our cells’ nuclei. RNA typically receives less attention than other substances from many nanotechnologists, but Guo said the molecule has distinct advantages.

"RNA combines the advantages of both DNA and proteins and puts them at the nanotechnologist’s disposal," Guo said. "It forms versatile structures that are also easy to produce, manipulate and engineer."

Since his discovery of a novel RNA that plays a vital role in a microscopic "motor" used by the bacterial virus phi29 (see related story), Guo has continued to study the structure of this RNA molecule for years. It formed the "pistons" of a tiny motor his lab created several years ago, and members of the team collaborated previously to build dimers and trimers - molecules formed from two and three RNA strands, respectively. Guo said the methods the team used in the past made their recent, more comprehensive construction work possible.

"By designing sets of matching RNA molecules, we can program RNA building blocks to bind to each other in precisely defined ways," he said. "We can get them to form the nano-shapes we want."

From the small shapes that RNA can form - hoops, triangles and so forth - larger, more elaborate structures can in turn be constructed, such as rods gathered into spindly, many-pronged bundles. These structures could theoretically form the scaffolding on which other components, such as nano-sized transistors, wires or sensors, could be mounted.

"Because these RNA structures can be engineered to put themselves together, they could be useful to industrial and medical specialists, who will appreciate their ease of engineering and handling," said Dieter Moll, a postdoctoral researcher in Guo’s lab. "Self-assembly means cost-effective."

Moll, while bullish on RNA’s prospects, cautioned that there was more work to be done before nanoscale models could be built at will.

"One of our main concerns right now is that, over time, RNA tends to degrade biologically," he said. "We are already working on ways to make it more resistant to degradation so that it can form long-lasting structures."

Guo said that though applications might be many years away, it would be most productive to take the long-term approach.

"We have not built actual scaffolds yet, just 3-D arrays," he said. "But we have built them from engineered biological molecules, and that could help us bridge the gap between the living and the nonliving world. If nanotech devices can eventually be built from both organic and inorganic materials, it would ease their use in both medical and industrial settings, which could multiply their usefulness considerably."

This research was sponsored in part by the National Science Foundation, the National Institutes of Health and the Department of Defense. Moll’s postdoctoral research is funded by the Austrian Science Fund’s Erwin Schroedinger Fellowship.

Guo is affiliated with Purdue’s Cancer Center and Birck Nanotechnology Center. The Cancer Center, one of just eight National Cancer Institute-designated basic research facilities in the United States, attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer.

The Birck Nanotechnology Center is located in Purdue’s new Discovery Park, located on the southwestern edge of campus. Programs include undergraduate teaching, graduate research and technology transfer initiatives with industry partners. Scientists in biology, chemistry, physics and several engineering disciplines participate in the research.

| newswise
Further information:
http://www.purdue.edu
http://discoverypark.e-enterprise.purdue.edu/wps/portal/.cmd/cs/.ce/155/.s/4270/_s.155/4270

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>