Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tobacco promising factory for biopharmaceuticals

12.08.2004


Recovery, purification of therapeutic proteins an economic and scientific challenge

The economics of producing biopharmaceuticals from transgenic plants such as tobacco is still a roadblock to producing large quantities of urgently needed medicines, especially for people in underdeveloped nations. Chenming (Mike) Zhang is testing a variety of ways to economically recover recombinant proteins from transgenic tobacco using different protein separation techniques.

Zhang, an assistant professor in the Department of Biological Systems Engineering (BSE) in the College of Engineering at Virginia Tech, is working with a team of three Ph.D. students to develop transgenic tobacco plants able to express recombinant proteins economically. Recombinant proteins are potential therapeutic agents for treating human and animal diseases and creating new vaccines. Plant-made vaccines are especially beneficial because plants are free of human diseases, reducing the cost to screen for viruses and bacterial toxins.



"Recombinant protein production from transgenic plants is challenging, not just from the molecular biology aspect of creating high expression plant lines, but also from the engineering aspect of recovering and purifying the proteins economically -- the importance of which cannot be overlooked," Zhang said.

Recombinant proteins are proteins expressed by a host other than their native hosts. For example, if the gene for human growth hormone is inserted into the genetic code of yeast (gene recombination), then the corresponding protein expressed in the yeast is called recombinant human growth hormone.

Zhang’s research starts with introducing the genes of interest into tobacco plants and then developing economical processes for recovering and purifying the expressed proteins. Relaxin, one of the proteins his team is studying, could potentially benefit patients with asthma, hay fever, and even cardiovascular disease.

Because most recombinant proteins are for therapeutic uses, they need to be highly purified to be safe for human use. Thus, once a protein is expressed, whether by transgenic tobacco or bacteria, the protein first needs to be recovered into liquid solutions before purification.

"Because of the high purity required, the purification is rigorous and not surprisingly, very expensive. Therefore, development of more economical techniques for protein purification is always an engineering challenge in order to lower the cost of therapeutic proteins or biopharmaceuticals," Zhang said.

Zhang uses tobacco in his research because it is a non-food crop and is well suited as a "factory" for recombinant protein production. The leafy green tobacco plant is relatively easy to alter genetically and produces thousands of seeds and a great deal of biomass. As a non-food crop, genetically manipulated tobacco will not pose a safety threat to products consumed by humans. "Since tobacco is neither a food nor a feed-crop, transgenic tobacco will not enter our food chain," Zhang said.

The research is funded by the Jeffress Memorial Trust and the Tobacco Initiative.

Zhang is the director of both the Protein Separation Laboratory and the Unit Operations Laboratory at Virginia Tech. The Protein Separation Laboratory supports research in protein expression and purification process development from transgenic plants and other expression systems. The Unit Operations Laboratory supports a course by the same name taught by Zhang in biological systems engineering. He is also affiliated with the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences.

The College of Engineering Dean’s Award for Outstanding Assistant Professor was presented to Zhang in 2004. His nomination was based on his extraordinary level of activities and accomplishments in curriculum development and teaching, development of a viable research program, and his cooperative efforts with colleagues at Virginia Tech and around the nation.

Before coming to Virginia Tech in 2001, Zhang was a research and development scientist for two years at Covance Biotechnology Services (now Diosynth RTP) in Cary, N. C.

Zhang received his bachelor’s and master’s degrees in metallurgical physical chemistry from the University of Science and Technology in Beijing, China, in 1986 and 1991, respectively. He received a second master’s degree in physical and analytical chemistry in 1996 from Iowa State University as well as his Ph.D. in chemical engineering in 1999.

Karen Gilbert | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>