Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain’s reward circuitry revealed in procrastinating primates


Using a new molecular genetic technique, scientists have turned procrastinating primates into workaholics by temporarily suppressing a gene in a brain circuit involved in reward learning. Without the gene, the monkeys lost their sense of balance between reward and the work required to get it, say researchers at the NIH’s National Institute of Mental Health (NIMH).

"The gene makes a receptor for a key brain messenger chemical, dopamine," explained Barry Richmond, M.D., NIMH Laboratory of Neuropsychology. "The gene knockdown triggered a remarkable transformation in the simian work ethic. Like many of us, monkeys normally slack off initially in working toward a distant goal. They work more efficiently – make fewer errors – as they get closer to being rewarded. But without the dopamine receptor, they consistently stayed on-task and made few errors, because they could no longer learn to use visual cues to predict how their work was going to get them a reward."

Richmond, Zheng Liu, Ph.D., Edward Ginns, M.D., and colleagues, report on their findings in the August 17, 2004 Proceedings of the National Academy of Sciences, published online the week of August 9th.

Richmond’s team trained monkeys to release a lever when a spot on a computer screen turned from red to green. The animals knew they had performed the task correctly when the spot turned blue. A visual cue--a gray bar on the screen--got brighter as they progressed through a succession of trials required to get a juice treat. Though never punished, the monkeys couldn’t graduate to the next level until they had successfully completed the current trial.

As in a previous study using the same task, the monkeys made progressively fewer errors with each trial as the reward approached, with the fewest occurring during the rewarded trial. Previous studies had also traced the monkeys’ ability to associate the visual cues with the reward to the rhinal cortex, which is rich in dopamine. There was also reason to suspect that the dopamine D2 receptor in this area might be critical for reward learning. To find out, the researchers needed a way to temporarily knock it out of action.

Molecular geneticist Ginns, who recently moved from NIMH to the University of Massachusetts, adapted an approach originally used in mice. He fashioned an agent (DNA antisense expression construct) that, when injected directly into the rhinal cortex of four trained monkeys, spawned a kind of decoy molecule which tricked cells there into turning-off D2 expression for several weeks. This depleted the area of D2 receptors, impairing the monkeys’ reward learning. For a few months, the monkeys were unable to associate the visual cues with the workload – to learn how many trials needed to be completed to get the reward.

"The monkeys became extreme workaholics, as evidenced by a sustained low rate of errors in performing the experimental task, irrespective of how distant the reward might be," said Richmond. "This was conspicuously out-of-character for these animals. Like people, they tend to procrastinate when they know they will have to do more work before getting a reward."

To make sure that it was, indeed, the lack of D2 receptors that was causing the observed effect, the researchers played a similar recombinant decoy trick targeted at the gene that codes for receptors for another neurotransmitter abundant in the rhinal cortex: NMDA (N-methlD-aspartate). Three monkeys lacking the NMDA receptor in the rhinal cortex showed no impairment in reward learning, confirming that the D2 receptor is critical for learning that cues are related to reward prediction. The researchers also confirmed that the DNA treatments actually affected the targeted receptors by measuring receptor binding following the intervention in two other monkeys’ brains.

"This new technique permits researchers to, in effect, measure the effects of a long-term, yet reversible, lesion of a single molecular mechanism," said Richmond. "This could lead to important discoveries that impact public health. In this case, it’s worth noting that the ability to associate work with reward is disturbed in mental disorders, including schizophrenia, mood disorders and obsessive-compulsive disorder, so our finding of the pivotal role played by this gene and circuit may be of clinical interest," suggested Richmond.

"For example, people who are depressed often feel nothing is worth the work. People with OCD work incessantly; even when they get rewarded they feel they must repeat the task. In mania, people will work feverishly for rewards that aren’t worth the trouble to most of us."

Jules Asher | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>