Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Telomere Crisis: A Crucial Stage in Breast Cancer

11.08.2004


A schematic representation of the genomic events associated with breast cancer progression, including the occurrence of telomere crisis.


These confocal microscope images highlight regions of chromosomes in cells of a breast duct exhibiting hyperplasia (left) and one exhibiting carcinoma in situ (right).


Telomere crisis is an important early event in the development of breast cancer, and its occurrence can be identified with precision, according to recent findings by a team of scientists at the Department of Energy’s Lawrence Berkeley National Laboratory and the University of California at San Francisco. Their report is now available through advance online publication of Nature Genetics.

Joe Gray, director of Berkeley Lab’s Life Sciences Division and a professor of laboratory medicine and radiation oncology at UCSF, is one of the paper’s lead authors, with Koei Chin and Britt Marie Ljung of UCSF; Carlos Ortiz de Solorzano, Paul Yaswen, and Martha Stampfer of Berkeley Lab; and Stephen J. Lockett from the National Cancer Institute.

In the breast, cells in a milk-collecting duct occasionally proliferate excessively due to development of a regulatory defect. Gray and his colleagues postulate that this results in a lesion called "usual ductal hyperplasia."



"The chromosomes in these growing cells lose a hundred or so base pairs of DNA every time they divide," Gray explains, "because the usual DNA replication processes don’t copy DNA all the way out to the ends of the chromosomes. This erodes the DNA sequences that interact with proteins to form structures called telomeres, which protect the chromosome ends."

Eventually the DNA ends erode so much they can no longer protect the chromosomes. When this happens the chromosomes become unstable, and damage-control mechanisms kick in that kill the unstable cells. This process, known as "telomere crisis," normally protects against inappropriate long-term cell growths like cancer.

Gray and his colleagues believe that "very rarely, the chromosome instability activates a specialized DNA-replication complex, telomerase, which can restore telomeres. Cells in which telomerase is activated can then proliferate indefinitely to form the next stage of cancer, known as ’ductal carcinoma in situ.’" Should the cancer progress further, it next invades other parts of the breast and may escape to other organs.

Not all cancer researchers agree that telomere crisis in hyperplasia, followed by reactivation of telomerase, leads to carcinoma in situ — and thence, sometimes, to invasive cancer; they assign cancer to other causes. Partly the disagreement arises because sequential events can’t be followed in individual tissue samples from living subjects.

"In human studies, the order from normal ducts, to ductal hyperplasia, to ductal carcinoma in situ, to invasive cancer is just association," says Gray, "because we can’t look at the same tissue all the way through the crisis."

Therefore the researchers compared the assumed sequence of events in tissue with what happened when they induced a culture of human mammary epithelial cells, HMEC, derived from normal breast tissue, to undergo telomere crisis and immortalization. Says Gray, "With HMEC in vitro we can follow the progression all the way through crisis, compare this to what we observe in actual tissue specimens from patients, and see if they are similar."

Using 3-D confocal microscopy and working first with breast-cancer tissue samples, at each stage the researchers assessed genomic instability and such correlated features as the amount of DNA content, signs of rearranged chromosomes, and the number of copies of genes known to play a role in cancer. These measures increased, on average, from the hyperplasia stage to the invasive cancer stage.
They also measured mean telomere lengths of cells at each stage. They found that mean telomere length decreased from normal tissue to carcinoma in situ, and decreased even more in invasive cancers.

When they looked at cultured human mammary cells, the researchers found a remarkably similar series. To induce telomeric crisis and subsequent immortalization in these cells, they introduced a known breast cancer gene into the culture and examined progressive generations of cells.

Telomere length decreased steadily. Genome instability and evidence of rearranged chromosomes were low before telomere crisis — just as in the tissue samples of usual ductal hyperplasia — and highest during the crisis, as in the samples of ductal carcinoma in situ. Instability then decreased, and changes in genome complexity leveled off, as in invasive cancer tissues — where critically short telomeres are presumably maintained by reactivated telomerase.

The mammary cell culture studies also confirmed that the probability of successful passage through the telomere crisis is low — most cells damaged because of shortened telomeres can’t evade cell death. In fact, women with usual ductal hyperplasia are only slightly more at risk of developing invasive cancer. When carcinoma in situ does form, it is probably from a single cell that has managed to reactivate telomerase.

"Our research establishes two things," Gray says. "First is that telomere crisis does appear to play an important role in the development of most breast cancers. Second is where it occurs: at the transition from hyperplasia to carcinoma in situ."

These findings suggest that people at higher risk of developing cancer can be identified in advance by measuring telomerase activity, genome instability, and other signals in the clinic.

The findings also point to possible ways of stopping cancer by derailing transition through the telomere crisis (rare as successful transition is): by using drugs that maintain the cell’s damage-control mechanisms, for example, or that prevent telomerase reactivation or that poison cells in which telomerase is already active. Some of these possible preventive agents are already being tested.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>