Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite darkness, nocturnal bees learn visual landmarks while foraging at night

10.08.2004


Day-active bees, such as the honeybee, are well known for using visual landmarks to locate a favoured patch of flowers, and to find their way home again to their hive. Researchers have now found that nocturnal bees can do the same thing, despite experiencing light intensities that are more than 100 million times dimmer than daylight. The new findings, reported in the latest issue of Current Biology by a team led by Eric Warrant at Lund University, Sweden, advance our understanding of the visual powers of nocturnal animals.



The competitive and dangerous world of the tropical rainforest has driven many normally day-active animals to adopt a nocturnal lifestyle, with the cover of darkness allowing them to exploit food resources in relative peace. Several groups of bees and wasps – including the Central American halictid bee Megalopta genalis – have become nocturnal, and despite the darkness and their apparently insensitive compound eyes, they have retained remarkable visual abilities. In the new work, performed on Barro Colorado Island in Panama, the researchers used infrared night-imaging cameras to show that by performing special orientation flights, Megalopta visually learns landmarks around the nest entrance prior to foraging and uses these landmarks to locate the nest upon return. The researchers found that if landmarks were moved to a nearby site while the bee was away, upon her return she intently searched for her nest in the landmark-bearing, but wrong, location.

Despite this impressive behavioral sensitivity, optical and physiological measurements revealed that Megalopta’s eyes are only about 30 times more sensitive to light than those of day-active honeybees, woefully inadequate to account for Megalopta’s nocturnal homing abilities. A solution to this paradox may lie outside the eye. The researchers identified in the bee’s brain specialised visual cells with morphologies suited to summing light signals and intensifying the received image.

Göran Frankel | alfa
Further information:
http://www.lu.se
http://www.vr.se

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>