Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite darkness, nocturnal bees learn visual landmarks while foraging at night

10.08.2004


Day-active bees, such as the honeybee, are well known for using visual landmarks to locate a favoured patch of flowers, and to find their way home again to their hive. Researchers have now found that nocturnal bees can do the same thing, despite experiencing light intensities that are more than 100 million times dimmer than daylight. The new findings, reported in the latest issue of Current Biology by a team led by Eric Warrant at Lund University, Sweden, advance our understanding of the visual powers of nocturnal animals.



The competitive and dangerous world of the tropical rainforest has driven many normally day-active animals to adopt a nocturnal lifestyle, with the cover of darkness allowing them to exploit food resources in relative peace. Several groups of bees and wasps – including the Central American halictid bee Megalopta genalis – have become nocturnal, and despite the darkness and their apparently insensitive compound eyes, they have retained remarkable visual abilities. In the new work, performed on Barro Colorado Island in Panama, the researchers used infrared night-imaging cameras to show that by performing special orientation flights, Megalopta visually learns landmarks around the nest entrance prior to foraging and uses these landmarks to locate the nest upon return. The researchers found that if landmarks were moved to a nearby site while the bee was away, upon her return she intently searched for her nest in the landmark-bearing, but wrong, location.

Despite this impressive behavioral sensitivity, optical and physiological measurements revealed that Megalopta’s eyes are only about 30 times more sensitive to light than those of day-active honeybees, woefully inadequate to account for Megalopta’s nocturnal homing abilities. A solution to this paradox may lie outside the eye. The researchers identified in the bee’s brain specialised visual cells with morphologies suited to summing light signals and intensifying the received image.

Göran Frankel | alfa
Further information:
http://www.lu.se
http://www.vr.se

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>