Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite darkness, nocturnal bees learn visual landmarks while foraging at night

10.08.2004


Day-active bees, such as the honeybee, are well known for using visual landmarks to locate a favoured patch of flowers, and to find their way home again to their hive. Researchers have now found that nocturnal bees can do the same thing, despite experiencing light intensities that are more than 100 million times dimmer than daylight. The new findings, reported in the latest issue of Current Biology by a team led by Eric Warrant at Lund University, Sweden, advance our understanding of the visual powers of nocturnal animals.



The competitive and dangerous world of the tropical rainforest has driven many normally day-active animals to adopt a nocturnal lifestyle, with the cover of darkness allowing them to exploit food resources in relative peace. Several groups of bees and wasps – including the Central American halictid bee Megalopta genalis – have become nocturnal, and despite the darkness and their apparently insensitive compound eyes, they have retained remarkable visual abilities. In the new work, performed on Barro Colorado Island in Panama, the researchers used infrared night-imaging cameras to show that by performing special orientation flights, Megalopta visually learns landmarks around the nest entrance prior to foraging and uses these landmarks to locate the nest upon return. The researchers found that if landmarks were moved to a nearby site while the bee was away, upon her return she intently searched for her nest in the landmark-bearing, but wrong, location.

Despite this impressive behavioral sensitivity, optical and physiological measurements revealed that Megalopta’s eyes are only about 30 times more sensitive to light than those of day-active honeybees, woefully inadequate to account for Megalopta’s nocturnal homing abilities. A solution to this paradox may lie outside the eye. The researchers identified in the bee’s brain specialised visual cells with morphologies suited to summing light signals and intensifying the received image.

Göran Frankel | alfa
Further information:
http://www.lu.se
http://www.vr.se

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>