Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite darkness, nocturnal bees learn visual landmarks while foraging at night

10.08.2004


Day-active bees, such as the honeybee, are well known for using visual landmarks to locate a favoured patch of flowers, and to find their way home again to their hive. Researchers have now found that nocturnal bees can do the same thing, despite experiencing light intensities that are more than 100 million times dimmer than daylight. The new findings, reported in the latest issue of Current Biology by a team led by Eric Warrant at Lund University, Sweden, advance our understanding of the visual powers of nocturnal animals.



The competitive and dangerous world of the tropical rainforest has driven many normally day-active animals to adopt a nocturnal lifestyle, with the cover of darkness allowing them to exploit food resources in relative peace. Several groups of bees and wasps – including the Central American halictid bee Megalopta genalis – have become nocturnal, and despite the darkness and their apparently insensitive compound eyes, they have retained remarkable visual abilities. In the new work, performed on Barro Colorado Island in Panama, the researchers used infrared night-imaging cameras to show that by performing special orientation flights, Megalopta visually learns landmarks around the nest entrance prior to foraging and uses these landmarks to locate the nest upon return. The researchers found that if landmarks were moved to a nearby site while the bee was away, upon her return she intently searched for her nest in the landmark-bearing, but wrong, location.

Despite this impressive behavioral sensitivity, optical and physiological measurements revealed that Megalopta’s eyes are only about 30 times more sensitive to light than those of day-active honeybees, woefully inadequate to account for Megalopta’s nocturnal homing abilities. A solution to this paradox may lie outside the eye. The researchers identified in the bee’s brain specialised visual cells with morphologies suited to summing light signals and intensifying the received image.

Göran Frankel | alfa
Further information:
http://www.lu.se
http://www.vr.se

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>