Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Animal Imaging Gives Cancer Clues

10.08.2004


PET imaging shows a breast cancer-like growth in a mouse. (Craig Abbey/UC Davis photo)


Advances in biomedical imaging are allowing UC Davis researchers to use mice more effectively to study cancers comparable to human disease. The system can distinguish different stages of cancer and could lead to more sensitive screening tests for cancer-fighting drugs.

Positron emission tomography (PET) is widely used for detecting and following cancer in human patients. It works by following short-lived radioactive tracers that are taken up by fast-growing cancer cells.

PET scanners used for humans don’t have the resolution to image an animal as small as a mouse. Researchers led by Simon Cherry, a professor of biomedical engineering at UC Davis, have developed a PET scanner sensitive enough to use with mice, and Craig Abbey, also in the Department of Biomedical Engineering, has developed image analysis methods to use the scanner to monitor tumors.



They’re working with cancer researchers Alexander Borowsky, Robert Cardiff and Jeffrey Gregg at the UC Davis Center for Comparative Medicine to study cancerous growths in mice similar to ductal carcinoma in situ (DCIS), a precursor to breast cancer in humans.

"With non-invasive imaging, we can follow the development of disease in one mouse over a long time period," Abbey said. The method is also more sensitive to changes in cancer growth, making it possible to look for small treatment effects.

Most invasive breast cancers are thought to develop from DCIS, and standard care is to remove the entire area involved, Borowsky said. Based on the appearance of a DCIS under the microscope, doctors can estimate how quickly it could become a more aggressive, invasive form if not completely removed, he said. The new PET technology allows researchers to follow the same changes in a mouse without surgery.

"Not only can we see the DCIS-like lesion, but we can detect the earliest transition to an invasive tumor," Borowsky said. The model could be used to test treatments that would slow or stop that transition in human patients, as well as to ask basic questions about how cancers develop.

The work was published July 26 in Proceedings of the National Academy of Sciences of the USA online.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>