Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Size does matter when choosing a mate


The difference in size between males and females of the same species is all down to the battle for a mate, according to a study of shorebirds published by British scientists today (August 9 2004).

The findings, published in the Proceedings of the National Academy of Sciences, are the first explanation for a rule identified over forty years ago by German scientist Bernhard Rensch.

Rensch’s rule, as it has become known, says that the ratio between the sizes of the sexes is related to body size with very few exceptions throughout the animal kingdom - for example, male gorillas are much bigger than female gorillas, whereas male rats are only slightly larger than female rats.

In this new research, scientists from the Universities of Bath, Oxford and East Anglia, carried out complex statistical analyses of the mating behaviour, body size and ecology of more than 100 different shorebird species from around the world.

They found that in larger shorebirds the battle between males for a mate is highly competitive and larger size offers an advantage over other potential suitors as they battle aggressively on the ground. The evolutionary result is that male Ruffs, a large shorebird, are about twice the size of females.

For smaller species, such as Dunlins, battles take place in the air and agility and smallness become more important factors. The result is that Dunlin males are smaller than the females.

Although biologists thought that sexual selection must be playing a role in driving Rensch’s rule, until now nobody had been able to prove exactly how it worked. Although the research was conducted on shorebirds, the researchers are confident that that the same driver is in operation in everything from mites to primates throughout the animal kingdom.

Dr Tamas Szekely from the University of Bath who led the project, said: “We have known about Rensch’s rule for many years but didn’t have a clue what drives it. Many biologists had considered sexual selection to be the most likely answer, but nobody really knew how.”
“Once we started analysing the data the story shaped up perfectly. I believe that sexual selection is the driver behind Rensch’s rule throughout the animal kingdom and we are already finding this is the case in other bird species we are studying such as Bustards,” said Szekely. “There’s no reason why it would not apply in many other animals from gorillas living on the rainforest floor to monkeys living high up in the canopy too.”

Shorebirds, gulls and auks are the ideal group to test theories explaining Rensch’s rule as the body mass of male shorebirds ranges from 59 per cent to 169 per cent of female body mass, encompassing nearly the entire range exhibited by the world’s 9,700 species of birds. Shorebirds also encompass the full range of mating systems including social polygyny (males have more than one female at a time), social monogamy (one partner at a time), and polyandry (females have more than one male at a time). The researchers collected data on body size, mating behaviour, ecology and life histories from existing literature and analysed them with a suite of statistical tools.

The researchers also found that where there is high competition between males, the difference in the ratio between the sizes of the sexes increases, explaining the changing ratios identified by Rensch. In contrast, in species with low intensity of male-male competition, females tend to be the larger of the sexes.

Andrew McLaughlin | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>