Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size does matter when choosing a mate

10.08.2004


The difference in size between males and females of the same species is all down to the battle for a mate, according to a study of shorebirds published by British scientists today (August 9 2004).

The findings, published in the Proceedings of the National Academy of Sciences, are the first explanation for a rule identified over forty years ago by German scientist Bernhard Rensch.

Rensch’s rule, as it has become known, says that the ratio between the sizes of the sexes is related to body size with very few exceptions throughout the animal kingdom - for example, male gorillas are much bigger than female gorillas, whereas male rats are only slightly larger than female rats.



In this new research, scientists from the Universities of Bath, Oxford and East Anglia, carried out complex statistical analyses of the mating behaviour, body size and ecology of more than 100 different shorebird species from around the world.

They found that in larger shorebirds the battle between males for a mate is highly competitive and larger size offers an advantage over other potential suitors as they battle aggressively on the ground. The evolutionary result is that male Ruffs, a large shorebird, are about twice the size of females.

For smaller species, such as Dunlins, battles take place in the air and agility and smallness become more important factors. The result is that Dunlin males are smaller than the females.

Although biologists thought that sexual selection must be playing a role in driving Rensch’s rule, until now nobody had been able to prove exactly how it worked. Although the research was conducted on shorebirds, the researchers are confident that that the same driver is in operation in everything from mites to primates throughout the animal kingdom.

Dr Tamas Szekely from the University of Bath who led the project, said: “We have known about Rensch’s rule for many years but didn’t have a clue what drives it. Many biologists had considered sexual selection to be the most likely answer, but nobody really knew how.”
“Once we started analysing the data the story shaped up perfectly. I believe that sexual selection is the driver behind Rensch’s rule throughout the animal kingdom and we are already finding this is the case in other bird species we are studying such as Bustards,” said Szekely. “There’s no reason why it would not apply in many other animals from gorillas living on the rainforest floor to monkeys living high up in the canopy too.”

Shorebirds, gulls and auks are the ideal group to test theories explaining Rensch’s rule as the body mass of male shorebirds ranges from 59 per cent to 169 per cent of female body mass, encompassing nearly the entire range exhibited by the world’s 9,700 species of birds. Shorebirds also encompass the full range of mating systems including social polygyny (males have more than one female at a time), social monogamy (one partner at a time), and polyandry (females have more than one male at a time). The researchers collected data on body size, mating behaviour, ecology and life histories from existing literature and analysed them with a suite of statistical tools.

The researchers also found that where there is high competition between males, the difference in the ratio between the sizes of the sexes increases, explaining the changing ratios identified by Rensch. In contrast, in species with low intensity of male-male competition, females tend to be the larger of the sexes.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>