Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transcriptional Gene Silencing in Nucleus Shown

09.08.2004


A new gene-silencing technique that takes place in the nucleus of human cells, has been demonstrated by researchers at the University of California, San Diego (UCSD) School of Medicine and the VA San Diego Healthcare System. The technique, called transcriptional gene silencing (TGS), provides a new research tool to study gene function and, if continuing studies prove the concept, it could potentially become a method for therapeutic modification or the expression of disease-producing genes.



Selected for speedy publication in the August 5, 2004 edition of Science Express, the study describes, for the first time, the ability to shut down a gene literally before it is born in the nucleus of a cell. The benefit over previous gene-silencing techniques is that the nuclear version may have the potential to last considerably longer than current methods that act in the cytoplasm, the cellular area outside the nucleus.

The new technique, and older gene-silencing methods that have given rise in recent years to a multi-million dollar pharmaceutical industry, utilizes ribonucleic acid (RNA), the cousin of DNA. Specifically, researchers use synthetic, short pieces of RNA called short interfering RNA (siRNA), to shut down genes. The synthetic versions are patterned after naturally occurring siRNA in the body that may act as a defense against gene sequences that come from viruses or other genetic parasites.


The study’s senior author, David J. Looney, M.D., associate professor of medicine at UCSD and the VA San Diego Healthcare System, said the new technique provides a new tool for research investigation aimed at elucidating the effects of different genes, and has the potential to modify gene expression in disease, such as knocking out expression of genes required for tumor growth. He cautioned, however, that further studies are needed to prove the general applicability of this concept.

An understanding of siRNA begins with a look at theway by which genes work. First, a “promoter” region within the gene must be active in order to allow the genetic information encoded in the DNA to be copied (transcribed) into a single strand of RNA called messenger RNA (mRNA). During normal transcription, the mRNA leaves the nucleus and travels to the cytoplasm of the cell, where it works with another cellular component called the ribosome to make proteins.

Technology developed about four years ago introduced synthetic siRNA into the cytoplasm of cells to silence specific genes. This technique was called post-transcriptional gene silencing (PTGS). However, PTGS is transient, with siRNA lasting only a few days in the cytoplasm. Although this is enough time for short-term research projects, the use of siRNA for therapeutic applications, such as treatment for viral infections like HIV, probably require multiple siRNA treatments or the use of a gene therapy approach.

UCSD researchers used either lentiviral vectors (molecular ferries) to open up the nuclear membrane, or special transfection reagents which direct the transfected synthetic siRNA to the nucleus. This allowed siRNA access to the promoter, where it stopped the first part of the gene-making process called transcription, before it began. Previous research with siRNA used in the nucleus of plants has indicated that this effect can be long lasting, giving rise to the hope that it will be similarly long lasting in humans. Until now, however, scientists have been unable to detect activity of siRNA directed against gene promoters in the nucleus of human cells.

Kevin V. Morris, Ph.D., the study’s first author and a post-doctoral fellow in Looney’s lab, noted that “theoretically, one could envision targeting virtually any gene at the level of the promoter and silencing that gene. This has implications in most biological processes in which one would want to down regulate the expression of a gene, such as those genes involved in virus infections such as HIV, as well as human cancers and certain genetic disorders.”

In continuing studies, the Looney lab and others in the country will investigate this new method’s persistence within the human-cell nucleus, its successful targeting of human promoters, and whether it is feasible to use this technique to inhibit HIV or other viruses.

In addition to Looney and Morris, the authors were Simon W.-L. Chan, Ph.D., UCLA Department of Molecular, Cell and Developmental Biology; and Steven E. Jacobsen, Ph.D., UCLA Department of Molecular, Cell and Developmental Biology, and the UCLA Molecular Biology Institute.

The study was supported by the National Institutes of Health.

| newswise
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>