Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Link Between Inflammation and Cancer

09.08.2004


First evidence of the molecular link between inflammation and cancer has been shown by researchers at the University of California, San Diego (UCSD) School of Medicine. Featured as the cover article in the August 6, 2004 issue of the journal Cell, the study also demonstrated that inactivation of a gene involved in the inflammatory process can dramatically reduce tumor development in mice with a gastrointestinal form of cancer.



The investigators found that a gene called I-kappa-B kinase (IKK beta), a pro-inflammatory gene, acts differently in two cell types to cause cancer. When IKK beta was deleted, the cancer incidence and tumor growth in mice was decreased by nearly 80 percent.

IKK beta is required for activation of a protein called nuclear factor kappa B (NF-kB), that acts as a master switch to turn on inflammation in response to bacterial or viral infections. In epithelial cells, NF-kB promotes the development of cancer not through inflammation, but through inhibition of a cell-killing process called apoptosis. In myeloid cells, NF-kB causes the expression of pro-inflammatory molecules that stimulate the division of genetically altered epithelial cells and thereby increase tumor size.


Because recurrent inflammation and chronic infections contribute to a large number of different cancers, the researchers chose one of these cancers – colitis associated cancer (CAC) – as their model for study. CAC occurs in people suffering from chronic colitis, which puts them at very high risk for cancer.

“We’ve shown how tumors arise from chronic infection and inflammation that act together with chemical carcinogens,” said the study’s senior author, Michael Karin, Ph.D., UCSD professor of pharmacology, American Cancer Society Research Professor, and a member of the Rebecca and John Moores UCSD Cancer Center.

“In response to chronic infection, the interplay between immune cells and the epithelial cells of the intestinal tract, which become genetically transformed to give rise to malignant cells by the carcinogen, results in increased tumor growth and suppression of apoptosis, whose role is to reduce cancer incidence,” Karin added. “Our studies show how NF-kB acts very early in the carcinogenesis process, in two different ways.”

The relationship between cancer and inflammation due to chronic infection has been suspected, but not proven, for many years. In a 1986 study, for example, one researcher compared the inflammatory response to a wound healing response, saying tumors were wounds that do not heal. Even without proof of the inflammation-cancer link, cancer therapies have been developed that utilize non-steroidal anti-inflammatory drugs (NSAIDs) to inhibit NF-kB and other mediators of inflammation, and to act as chemo-preventive agents that reduce the risk of gastrointestinal cancers. Some of these therapies, however, have been only partially effective because the precise molecular pathway targeted by the treatment has not been known.

In their study of NF-kB, the researchers began by administering two compounds to mice. The first was a pro-carcinogen called azoxymethane (AOM), which is commonly used to induce colorectal cancer in experimental animals. The second compound was a pro-inflammatory irritant called dextran sulfate sodium salt (DSS), that eroded the intestinal-tract epithelial cells, allowing the entrance of enteric bacteria, with resulting inflammation generated by the body to fight the infection.

In normal mice, these two compounds trigger both inflammation and, a few months later, tumors called adenocarcinomas. In this study, DSS and AOM were given to two additional groups of mice – one group bred without IKK beta in the epithelial cells of the intestine; the second group without IKK beta in myeloid cells, which play an important role in the immune system by generating white blood cells called macrophages to induce inflammation and fight infection.

Focusing on the epithelial cells deficient in IKK beta, the researchers found that DSS induced inflammation in the mice, even without NF-kB activation. And yet, the incidence of tumor development decreased by 80 percent as compared to normal mice. Using biochemical analysis of the tissue without IKK beta, the scientists determined that stimulation of a process called apoptosis had decreased cancer development.

A form of cell suicide, apoptosis prevents the growth of unwanted cells. It is a normal process the body uses to kill mutated or chemically transformed cells, as well as useful cells that have outlived their purpose. Evading apoptosis is one of the hallmarks of cancer.

In their study, the UCSD team found that apoptosis was increased in mice bred without IKK beta. Specifically, without NF-kB activation, there was an increase of pro-apoptotic proteins Bak and Bax, and a decrease in a protein called Bcl-xL, known to inhibit apoptosis.

Turning their focus to myeloid cells, the team found that inactivation of IKK beta reduced the expression of many genes that contribute to the inflammatory process. When NF-kB was not activated, there was a 50 percent reduction in tumors caused by DSS/AOM. The tumors that grew were 75 percent smaller in size than those in the normal mice that had received the two compounds.

To understand how IKK beta in myeloid cells affects tumor development, the researchers first examined the affect of IKK beta deletion on apoptosis and found none. What they discovered, instead, was that IKK beta deletion in myeloid cells decreased the expression of pro-inflammatory molecules such as cyclooxygenase, also known as COX-2, and interleukins 1 and 6, which are expressed at sites of inflammation.

“Our findings establish for the first time the role of myeloid cells in inflammation-associated tumor promotion in addition to their role in tumor progression and invasiveness,” the authors stated in the Cell paper.

The authors added that “in addition to identifying a key molecular mechanism connecting inflammation and cancer, our results suggest that specific pharmacological inhibition of IKK beta may be very effective in prevention of colitis associated cancer.”

In addition to Karin, the study’s authors were first author Florian R. Greten, M.D., UCSD Department of Pharmacology; and Lars Eckmann, M.D., UCSD Department of Medicine; Jin Mo Park, Ph.D., UCSD Department of Pharmacology; Zhi-Wei Li, Ph.D., UCSD Department of Pharmacology and the Moffit Cancer Center and Research Institute, Tampa, Florida; Laurence J. Egan, M.D., UCSD Department of Medicine and the Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota; and Martin F. Kagnoff, M.D., UCSD Department of Medicine.

The study was supported by grants from the National Institutes of Health, the Superfund Research Program, the Crohn’s and Colitis Foundation of America, and the Deutsche Forschungsgemeinschaft.

| newswise
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>