Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Link Between Inflammation and Cancer

09.08.2004


First evidence of the molecular link between inflammation and cancer has been shown by researchers at the University of California, San Diego (UCSD) School of Medicine. Featured as the cover article in the August 6, 2004 issue of the journal Cell, the study also demonstrated that inactivation of a gene involved in the inflammatory process can dramatically reduce tumor development in mice with a gastrointestinal form of cancer.



The investigators found that a gene called I-kappa-B kinase (IKK beta), a pro-inflammatory gene, acts differently in two cell types to cause cancer. When IKK beta was deleted, the cancer incidence and tumor growth in mice was decreased by nearly 80 percent.

IKK beta is required for activation of a protein called nuclear factor kappa B (NF-kB), that acts as a master switch to turn on inflammation in response to bacterial or viral infections. In epithelial cells, NF-kB promotes the development of cancer not through inflammation, but through inhibition of a cell-killing process called apoptosis. In myeloid cells, NF-kB causes the expression of pro-inflammatory molecules that stimulate the division of genetically altered epithelial cells and thereby increase tumor size.


Because recurrent inflammation and chronic infections contribute to a large number of different cancers, the researchers chose one of these cancers – colitis associated cancer (CAC) – as their model for study. CAC occurs in people suffering from chronic colitis, which puts them at very high risk for cancer.

“We’ve shown how tumors arise from chronic infection and inflammation that act together with chemical carcinogens,” said the study’s senior author, Michael Karin, Ph.D., UCSD professor of pharmacology, American Cancer Society Research Professor, and a member of the Rebecca and John Moores UCSD Cancer Center.

“In response to chronic infection, the interplay between immune cells and the epithelial cells of the intestinal tract, which become genetically transformed to give rise to malignant cells by the carcinogen, results in increased tumor growth and suppression of apoptosis, whose role is to reduce cancer incidence,” Karin added. “Our studies show how NF-kB acts very early in the carcinogenesis process, in two different ways.”

The relationship between cancer and inflammation due to chronic infection has been suspected, but not proven, for many years. In a 1986 study, for example, one researcher compared the inflammatory response to a wound healing response, saying tumors were wounds that do not heal. Even without proof of the inflammation-cancer link, cancer therapies have been developed that utilize non-steroidal anti-inflammatory drugs (NSAIDs) to inhibit NF-kB and other mediators of inflammation, and to act as chemo-preventive agents that reduce the risk of gastrointestinal cancers. Some of these therapies, however, have been only partially effective because the precise molecular pathway targeted by the treatment has not been known.

In their study of NF-kB, the researchers began by administering two compounds to mice. The first was a pro-carcinogen called azoxymethane (AOM), which is commonly used to induce colorectal cancer in experimental animals. The second compound was a pro-inflammatory irritant called dextran sulfate sodium salt (DSS), that eroded the intestinal-tract epithelial cells, allowing the entrance of enteric bacteria, with resulting inflammation generated by the body to fight the infection.

In normal mice, these two compounds trigger both inflammation and, a few months later, tumors called adenocarcinomas. In this study, DSS and AOM were given to two additional groups of mice – one group bred without IKK beta in the epithelial cells of the intestine; the second group without IKK beta in myeloid cells, which play an important role in the immune system by generating white blood cells called macrophages to induce inflammation and fight infection.

Focusing on the epithelial cells deficient in IKK beta, the researchers found that DSS induced inflammation in the mice, even without NF-kB activation. And yet, the incidence of tumor development decreased by 80 percent as compared to normal mice. Using biochemical analysis of the tissue without IKK beta, the scientists determined that stimulation of a process called apoptosis had decreased cancer development.

A form of cell suicide, apoptosis prevents the growth of unwanted cells. It is a normal process the body uses to kill mutated or chemically transformed cells, as well as useful cells that have outlived their purpose. Evading apoptosis is one of the hallmarks of cancer.

In their study, the UCSD team found that apoptosis was increased in mice bred without IKK beta. Specifically, without NF-kB activation, there was an increase of pro-apoptotic proteins Bak and Bax, and a decrease in a protein called Bcl-xL, known to inhibit apoptosis.

Turning their focus to myeloid cells, the team found that inactivation of IKK beta reduced the expression of many genes that contribute to the inflammatory process. When NF-kB was not activated, there was a 50 percent reduction in tumors caused by DSS/AOM. The tumors that grew were 75 percent smaller in size than those in the normal mice that had received the two compounds.

To understand how IKK beta in myeloid cells affects tumor development, the researchers first examined the affect of IKK beta deletion on apoptosis and found none. What they discovered, instead, was that IKK beta deletion in myeloid cells decreased the expression of pro-inflammatory molecules such as cyclooxygenase, also known as COX-2, and interleukins 1 and 6, which are expressed at sites of inflammation.

“Our findings establish for the first time the role of myeloid cells in inflammation-associated tumor promotion in addition to their role in tumor progression and invasiveness,” the authors stated in the Cell paper.

The authors added that “in addition to identifying a key molecular mechanism connecting inflammation and cancer, our results suggest that specific pharmacological inhibition of IKK beta may be very effective in prevention of colitis associated cancer.”

In addition to Karin, the study’s authors were first author Florian R. Greten, M.D., UCSD Department of Pharmacology; and Lars Eckmann, M.D., UCSD Department of Medicine; Jin Mo Park, Ph.D., UCSD Department of Pharmacology; Zhi-Wei Li, Ph.D., UCSD Department of Pharmacology and the Moffit Cancer Center and Research Institute, Tampa, Florida; Laurence J. Egan, M.D., UCSD Department of Medicine and the Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota; and Martin F. Kagnoff, M.D., UCSD Department of Medicine.

The study was supported by grants from the National Institutes of Health, the Superfund Research Program, the Crohn’s and Colitis Foundation of America, and the Deutsche Forschungsgemeinschaft.

| newswise
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>