Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LBP-1a gene mutation linked to disruption of normal fetal development

09.08.2004


A defect in blood vessel formation in human placenta due to loss of LBP-1a gene is linked to spontaneous abortion, infant death and long-term neurological or cardiovascular problems



The lack of a gene called LBP-1a in the mouse embryo prevents normal growth of blood vessels in the placenta. This finding suggests that a similar defect in humans could play a role in fetal growth retardation, infant mortality and spontaneous abortion. These results, by investigators at St. Jude Children’s Research Hospital, are published in the August issue of Molecular and Cellular Biology (MCB). The finding could one day help scientists develop a test to identify women who have this mutation and are at risk for these problems, as well as guide development of new prevention treatments.

The researchers also report that the protein made by the LBP-1a gene is a member of a family of proteins called the "grainyhead transcription factors." This is the first gene-based evidence that a member of this family is essential for normal development of blood vessels outside the growing embryo. A transcription factor is a protein that activates a gene and in this way regulates a specific process.


The study found that mouse embryos lacking the LBP-1a gene were normal during the first 9 ½ days of development, a time during which they survive by exchanging gases, nutrients and toxic breakdown products of food with their outside environment, the amniotic fluid. But embryos lacking LBP-1a failed to produce the extensive network of blood vessels that extends into the part of the developing placenta called the labyrinthine layer and mingles with the sinuses containing blood from the mother. A sinus is a channel inside certain tissues that contains blood.

In the absence of this link to the mother’s blood in the placenta, embryos suffered growth retardation by day 10 ½ of pregnancy, and died the next day.

The finding strongly suggests that LBP-1a plays a critical role in the production of blood vessels outside the embryo that extend into the placenta, according to John M. Cunningham, M.D., an associate member of St. Jude Hematology/Oncology. Cunningham is senior author of the MCB report.

"This will likely help us explore the contribution of special proteins called growth factors in regulating the activity of LBP-1a and the development of blood vessels outside the embryo," Cunningham said.

The blood vessel defect caused by lack of LPB-1a is similar to complications in human pregnancy linked to pre-eclampsia and missed abortion. Pre-eclampsia is an abnormal condition during pregnancy that triggers hypertension and fluid retention in the mother and can lead to the more severe condition of eclampsia, which causes convulsions and coma. Missed abortion refers to a pregnancy in which the embryo stops developing normally, and which usually ends in spontaneous abortion.

"Lack of normal blood vessel formation in the yolk sac and placenta in humans could also cause intra-uterine growth retardation (IUGR)," said Vishwas Parekh, M.D., a postdoctoral fellow in the Cunningham lab and lead author of this work.

IUGR is linked to infant death and newborn defects in the nervous and cardiovascular systems, as well as to type 2 diabetes later in life. Type 2 diabetes is caused by the inability of the body’s cells to use insulin.

The St. Jude researchers found that mouse embryos lacking LPB-1a had no major abnormalities in their organ systems, overall body shapes or blood cell development.

"This strongly suggested that the growth retardation was not due to a problem in the embryo itself," Parekh said. Scientists found almost a complete lack of blood vessels in the yolk sacs connected to embryos lacking LPB-1a and pools of free fetal blood in the amniotic cavity--the space inside the membrane surrounding the embryo. The blood vessels that did form were abnormally large and thin; and no fetal blood vessels reached the maternal blood sinuses.

The St. Jude team also noted that a critical layer of cells that forms the placenta--the trophoblast cells--was normal in fetuses missing LPB-1a. This further supported the idea that it was the lack of normal blood vessels and not another abnormality in the placenta that caused fetal growth retardation.

The researchers concluded that normal formation of the placenta cannot occur in embryos lacking LBP-1a because of a defect in the formation of critical blood vessels needed to obtain nutrients from the mother’s blood while expelling waste products. Other authors of this paper are Amy McEwen, Virginia Barbour, Yutaka Takahashi and Jerold E. Rehg (St. Jude) and Stephen M. Jane (Royal Melbourne Hospital Research Foundation, Australia).

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>